Ферменты


Возможность проведения различных манипуляций с ДНК in vitro всецело зависит от наличия очищенных ферментов, которые специфическим образом разрезают, модифицируют и соединяют молекулы. В настоящее время отсутствуют чисто химические методы, с помощью которых можно было бы осуществлять перестройку молекул ДНК с такими селективностью и разнообразием, которые характерны для ферментативных реакций. В то же время даже с помощью довольно небольшого числа ферментов можно получать рекомбинантные молекулы ДНК. Большинство этих ферментов были открыты при обстоятельствах, не связанных с их использованием при манипулировании с молекулами ДНК. На самом деле каждый фермент играет важную роль катализатора в том или ином химическом процессе, протекающем в организме, из которого он выделен. Использование ферментов в качестве инструмента при манипулировании с ДНК зависит, в частности, от их доступности и стабильности, а особенно от их чистоты, и прежде всего от того, свободны ли они от примесей, влияющих на ферментативную активность.

Разные экзонуклеазы расщепляют цепь предпочтительно либо с 5'-, либо с 3'-конца, но иногда они не проявляют такой специфичности. Эндонуклеазам свободные концы не требуются, поэтому данные ферменты могут гидролизовать кольцевые молекулы ДНК. Разрезание осуществляется по внутренним фосфодиэфирным связям, при этом образуются фрагменты разной длины. С помощью экзонуклеаз тоже могут образовываться короткие полинуклеотидные фрагменты, однако конечным продуктом во многих случаях являются нуклеозидмонофосфаты, поскольку экзонуклеазы осуществляют гидролиз, отщепляя последовательно один остаток за другим.

Наконец, нуклеазы отличаются одна от другой по тому, с какой стороны от межнуклеотидного фосфодиэфирного мостика осуществляется гидролиз. Одни ферменты делают разрез между фосфатом и 3'-гидроксильной группой с образованием 5'-фосфомоноэфирных продуктов, другие – между фосфатом и 5'-гидроксильной группой.


Нуклеазы


а. Общие свойства

Нуклеазы позволяют специфическим образом модифицировать молекулы ДНК и РНК. Каждый фермент может быть отнесен к тому или иному классу в соответствии с его специфичностью или типом реакции, которую он катализирует. Так, ряд ферментов, подобно рестриктирующим эндонуклеазам, действует только на ДНК. Другие, подобно панкреатической РНКазе, гидролизуют только РНК. Есть ферменты, которые используют в качестве субстратов как ДНК, так и РНК. Одни нуклеазы предпочтительно действуют либо на двухцепочечные, либо на одноцепочечные полинуклеотидные субстраты, другие не проявляют такой выраженной предпочтительности.

Нуклеазы можно также разделить на две следующие категории: экзонуклеазы и эндонуклеазы.

Большинство ферментов упоминаются в тексте этой книги. Нуклеазы, отмеченные звездочкой, используются как рутинные реактивы в экспериментах по получению рекомбинантных молекул ДНК и поэтому рассматриваются более детально.

б. Нуклеазы, специфичные в отношении одноцепочечной ДНК

Эндонуклеазы. Некоторые эндонуклеазы гидролизуют одноцепочечные молекулы ДНК примерно в тысячу раз быстрее, чем двухцепочечные. Такая специфичность используется во многих экспериментах – при конструировании рекомбинантных ДНК, при гетеродуплексном анализе и даже при анализе экспрессии генов. Некоторые реакции, катализируемые подобными эндонуклеазами.

Несколько разных эндонуклеаз такого типа были достаточно хорошо очищены и охарактеризованы, чтобы их можно было использовать в качестве реактивов. Одна из них, нуклеаза S1, получена из высушенных препаратов плесневого гриба Aspergillus oryzae; источниками двух других широко используемых ферментов являются Neurospora и Mung beans. Каждый из этих трех ферментов проявляет максимальную активность и точность распознавания одноцепочечных и двухцепочечных молекул при определенных условиях. Все три фермента гидролизуют как ДНК, так и РНК. При разрыве фосфодиэфирных связей с помощью этих ферментов образуются 5'-монофосфатные и З'-гидроксильные концы.

Экзонуклеазы. Экзонуклеаза E. coli exo VII специфична в отношении одноцепочечных ДНК. Она обладает необычной экзонуклеазной активностью в том смысле, что инициирует отщепление как с 5'-, так и с З'-концов цепи, в то время как наиболее известные экзонуклеазы специфичны к какому-то одному концу. Продуктами гидролиза отдельных цепей экзонуклеазой ехо VII являются олигонуклеотиды длиной примерно 25 мономерных единиц, которые содержат 5'-фосфомоноэфирные концевые группы.

в. Нуклеаза Bal 31

Псевдомонада Alteromonas espejiana секретирует единственную дезоксирибонуклеазу, получившую название Bal 31. В отношении одноцепочечной ДНК, в том числе одноцепочечных участков двухцепочечной ДНК, Bal 31 ведет себя как эндонуклеаза, действуя аналогично другим эндонуклеазам, специфичным к одноцепочечным ДНК. Однако в отношении интактной двухцепочечной ДНК этот фермент проявляет экзонуклеазную активность, по-видимому, благодаря тому, что он способен распознавать локальные одноцепочечные участки. Bal 31 разрезает обе цепи на обоих концах дуплекса, т.е. осуществляет деградацию одновременно в направлениях 3' – >5' и 5'–>3'. В результате двухцепочечная молекула постепенно укорачивается. Если эмпирически оценить скорость этого процесса, то с помощью фермента Bal 31 можно получать фрагменты ДНК нужной длины. Хотя укорочение разных молекул ДНК происходит несинхронно, получается набор фрагментов, длина которых близка к заданной. В результате исчерпывающего гидролиза с помощью Bal 31 промежуточные олигонуклеотидные продукты расщепляются до 5'-мононуклеотидов.

г. РНКазы Н

Существует группа ферментов, получивших название РНКазы Н потому, что они специфически расщепляют цепь РНК в гибридном дуплексе РНК-ДНК. РНКаза Н E. coli представляет собой эндонуклеазу, продуктами действия которой являются олигорибонуклеотиды с 5'-фосфомоноэфирными концами. Этот фермент широко используется как реактив. Клетки эукариот тоже содержат подобную эндонуклеолитическую РНКазу Н. РНКаза Н-экзонуклеолитическая активность присуща экзонуклеазе III E. coli и обратным транскриптазам, кодируемым ретровирусами. Экзонуклеаза III расщепляет РНК до 5'-нуклеозид-монофосфатов в направлении З'–>5', а продуктами гидролиза цепи РНК с помощью обратной транскриптазы являются 5'-фосфорилированные олигорибонуклеотиды длиной от двух до десяти нуклеотидов.


Эндонуклеазы рестрикции


Эволюция наделила различные виды бактерий уникальными эндонуклеазами, позволяющими им отличать их собственную ДНК от чужеродной. Тем самым природа снабдила ученых богатым набором высокоспецифичных реактивов для расщепления ДНК. При изучении ДНК большое значение имеют две важные особенности рестриктирующих эндонуклеаз. Первая связана с замечательной способностью фермента узнавать специфические короткие нуклеотидные последовательности в ДНК. Вторая состоит в том, что существует большое количество различных эндонуклеаз рестрикции, каждая из которых узнает специфическую последовательность.

а. Три типа эндонуклеаз рестрикции

Эндонуклеазы типов I и И. Ферменты, относящиеся к группе эндонуклеаз типов I и II, – это сложные белки, обладающие активностями рестриктирующей эндонуклеазы и метилазы. Эти интересные ферменты не используются, однако, при конструировании рекомбинантных молекул ДНК. Ферменты типа I связываются с ДНК в специфических участках и затем производят двухцепочечные разрезы на разном расстоянии от сайтов узнавания, варьирующем от 400 п.н. до 7 т.п.н. Для осуществления ферментативного гидролиза ДНК необходимы Mg2+, ATP и S‑аденозилметионин. Последний активирует фермент. Разрезание сопровождается гидролизом АТР, при этом фермент утрачивает эндонуклеолитическую активность, но сохраняет АТРазную. Таким образом, эндонуклеазы типа I являются ДНК-зависимыми АТРазами. Кроме того, они представляют собой сайтспецифические метилазы, катализирующие образование 6‑метиладениновых остатков в сайте узнавания. Например, сайтом узнавания для фермента из E. coli K12 является


5'-AACNNN NN N GTGC‑3' 3‑TTGNNNNNNCACG‑5'


где N – любое основание, a N‑комплементарное ему основание. Эндонуклеаза разрезает цепь на значительном расстоянии от сайта узнавания, но при этом метилирование с образованием 6‑метил-аденина происходит в пределах этого сайта. Эндонуклеазная активность проявляется только при наличии полностью неметилированного сайта. Сайт узнавания для фермента E. coli K12 состоит из двух коротких специфических олигонуклеотидов, разделенных шестью-восемью неспецифическими парами оснований. Такая структура типична для сайтов узнавания ферментов типа I, обнаруженных у различных штаммов бактерий. Специфические олигонуклеотидные последовательности для разных ферментов различаются, но метилированные остатки А всегда находятся в одинаковых позициях.

Родственные системы рестрикции-модификации типа I кодируются аллельными локулами геномов различных кишечных бактерий. С каждой системой связаны три сцепленных гена: hsdR, hsdM и hsdS, расположенные в порядке, соответствующем порядку транскрипции. Полипептидные продукты hsdM и hsdS транслируются с одной двухцистронной мРНК и вместе составляют метилазу. Первый из них обладает метилазной активностью, а второй осуществляет сайтспецифическое узнавание. Продукт гена hsdR обладает эндонуклеазной активностью. Все три полипептида содержатся в различных пропорциях в активных препаратах ферментов типа I.


Случайные файлы

Файл
28000-1.RTF
132486.rtf
169512.rtf
55547.rtf
66466.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.