Статистические методы обработки данных (183921)

Посмотреть архив целиком

Лабораторная работа №1


СТАТИСТИЧЕСКИЕ МЕТОДЫ ОБРАБОТКИ ОПЫТНЫХ ДАННЫХ. ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ ВБОРКИ


Цель: Научиться основным методам обработки данных, представленных выборкой. Изучить графические представления данных. Овладеть навыками расчета с помощью ЭВМ основных числовых характеристик выборки.

Основным объектом исследования в эконометрике является выборка. Выборкой объема n называются числа х12….хn получаемые на практике при n – кратком повторении эксперимента в неизменных условиях. На практике выборку чаще всего представляют статистическим рядом. Для этого вся числовая ось, на которой лежат значения выборки, разбивается на k интервалов ( это число выбирается произвольно от 5 до 10), которые обычно равны, вычисляются середины интервалов zn и считается число элементов выборки, попадающих в каждый интервал n1. статистическим рядом называется последовательность пар (z1. n1). Рассмотрим решение задачи на ЭВМ и ППП EXCEL на следующей примере.

ПРИМЕР. Дана выборка чисел выручки магазина за 30 дней:


72

74

69

71

73

68

73

77

76

77

76

76

76

64

65

75

70

75

71

69

72

69

78

72

67

72

81

75

72

69


Построим статистический ряд, полигон, гистограмму и кумулятивную кривую.

Откроем книгу программы EXCEL. Введем в первый столбец (ячейки А1-А30) исходные данные. Определим область чисел, на какой лежат данные. Для этого найдем максимальный и минимальный элементы выборки. Введем в В1 «Максимум», а в В2 «Минимум», а в соседних ячейках С1 и С2 определим функции «МАХ» и «МIN», в качестве аргументов которых (в графе «число») обведем область данных (ячейки А1-А30). Результатом будут 64 и 81. видно, что все данные укладываются на отрезке [64;81]. Разделим его на 9 (выбирается произвольно от 5 до 10) интервалов:

64-66; 66-68: 68-70: 70-72: 72-74, 74-76, 76-78, 78-80, 80-82. в ячейке D1-D10 вводим верхние границы интегралов группировки – числа 66, 68, 70, 72, 74, 76, 78, 80, 82. Для вычисления частот n1 используют функцию ЧАСТОТА, находящуюся в категории «Статистические». Введем ее в ячейку Е1. в строке «Массив данных» введем диапазон выборки (ячейки А1-А30). В строке «Двоичный массив» введем диапазон верхних границ интервалов группировки (ячейки D1-D9). Результат функции является массивом и выводится в ячейках Е1-Е9. для полного выбора (не только первого числа в Е1) нужно выделить ячейки Е1-Е9, обведя их мышью, и нажать F2, а далее одновременно CTRL+SHIFT+ENTER. Результат – частоты интервалов 2,2,5,7,3,7,3,0,1.

Для построения гистограммы нужно выбрать ВСТАВКА/ДИАГРАММА или нажать на соответствующий значок на основной панели (при этом курсор должен стоять в свободной ячейке) далее выбрать тип: ГИСТОГРАММА, вид по выборке, нажать «ДАЛЕЕ», в строке «ПОДПИСИ ОСИ Х» ввести интервалы ячейках D1-D5, нажать «ДАЛЕЕ» ввести название «ГИСТОГРАММА», подписи осей «ИНТЕВАЛЫ» и «ЧАСТОТА», нажать «ГОТОВО». Для создания полигона сделать то же самое, только вместо типа диаграммы «ГИСТОГРАММА», выбрать «ГРАФИК». Для построения кумулятивной кривой нужно посчитать накопленные частоты. Для этого в ячейку F1 вводим «=Е1», в F2 – вводим «=F1+Е2» и автозаполнением перетаскиваем эту ячейку до F9. далее строим график как и в случае полигона, но в строке «ДИАПАЗОН» вводим накопленные частоты, ссылаясь на F1- F9, а на вкладке «РЯД», в строке «ПОДПИСИ ОСИ Х» вводим интервалы в ячейках D1-D9.

Находим основные числовые характеристики выборки. Для их ввода выделяем два столбца, например G и H, в первом вводим название характеристики, во втором – функцию, в которой в качестве массива данных (строка»ЧИСЛО1»), указать ссылку на А1-А30


Характеристика

Функция

Объем выборки

30

Выборочное среднее

72,46666667

Дисперсия

15,63678161

Стандартное отклонение

3,954337063

Медиана

72

Мода

72

Коэффициент эксцесса

-0,214617804

Коэффициент асимметрии

-0,154098799

Персентиль 40%

72

Персентиль 80%

76


Существует другой способ вычисления числовых характеристик выборки. Для этого ставим курсор в свободную ячейку (например D11). Затем вызываем в меню «Сервис» подменю «Анализ данных». Если в меню «Сервис» отсутствует этот пункт, то в меню «Сервис» нужно выбрать пункт «Надстройки» м в нем поставить флажок напротив пункта «Пакет анализа». В окне «Анализ данных» нужно выбрать пункт «Описательная статистика». В появившемся окне в поле «Входной интервал» делаем ссылку на выборку А1-А23. Оставляем группирование «По столбцам» в разделе «Параметры вывода» ставим флажок на «Выходной интервал» и в соседнем поле создаем ссылку на верхнюю левую ячейку области вывода (например D11), ставим флажок напротив «Описательная статистика», нажимаем «ОК». результат – основные характеристики выборки (сделайте шире столбцов D, переместив его границу в заголовок).





Лабораторная работа № 2


ПРОВЕРКА СТАТИСТИЧЕСКИХ ГИПОТЕЗ


Цель: Ознакомиться с методом проверки основных статистических гипотез, используемых в экономике, с помощью ЭВМ.


1. ПРОВЕРКА ГИПОТЕЗЫ О СООТВЕТСТВИИ (КРИТЕРИЙ СОГЛАСИЯ)


Используется для проверки предположения о том, что полученные в результате наблюдений данные соответствуют нормам. Рассматривается гипотеза о том, что отклонения от норм невелики, и ими можно пренебречь. При этом задается доверительная вероятность p которая имеет смысл вероятности не ошибиться при принятии гипотезы. Рассмотрим проверку на примере.

ПРИМЕР: 1. при производстве микросхем процессоров используются кристаллы кварца. Стандартом предусмотрено, чтобы 50% образцов не было обнаружено ни одного дефекта кристаллической структуры, у 15% - один дефект, у 13% - 2 дефекта, у 12% - 3 дефекта, у 10% более 3 дефектов. При анализе выборочной партии оказалось, что из 100 экземпляров распределение по дефектам партии оказалось, что из 1000 экземпляров распределение по дефектам следующего (вариант соответствует ЭВМ): Можно ли с вероятностью 0,99 считать, что партия соответствует стандарту?

Введем в А1 заголовок «НОРМА» и ниже в А2-А6 показатели – числа 500, 150, 130, 120, 100. в ячейку В1 введем заголовок «НАБЛЮДЕНИЯ» и ниже в В2-В6 наблюдаемые показатели 516, 148, 131, 110, 95. в третьем столбце вводятся формулы для критерия: С1 заголовок «КРИТЕРИЙ», в С2 формулу «=(А2-В2)*(А2-В2)/А2». Автозаполнением размножим эту формулу на С3-С6. в ячейку С7 запишем общее значение критерия – сумму столбца С2-С6. для этого поставим курсор в С6 и вызвав функцию в категории «Математический» найдем СУММ и в аргументе «Число 1» укажем ссылку на С2-С6. получиться результат критерия Z= 1,629692308. Для ответа на вопрос, соответствуют ли опытные показатели нормам, Z сравнивают с критическим значением Zkp. Вводим в D1 текст “критическое значение» в Е1 вводим функцию ХИ2ОБР (категория «Статистические») у которой два аргумента: «Вероятность» - вводим уровень значимости α =1-p и «Степени свободы» - вводят число n-1, где n – число норм). Результат 13,27670414. видно, что критическое значение больше критерия, следовательно опытные данные соответствуют стандартным и партия с заданной вероятностью можно отнести как соответствующую стандарту.


Норма

Наблюдения

Критерий

Критическое значение

13,27670414

500

516

0,512



150

148

0,026666667



130

131

0,007692308



120

110

0,833333333



100

95

0,25




1000

1,629692308




2. ПРОВЕРКА ГИПОТЕЗЫ О РАВЕНСТВЕ ДИСПЕРСИЙ



Случайные файлы

Файл
62417.rtf
101755.rtf
27810.rtf
36623.rtf
1879-1.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.