Теорія Маршала як внесок у розвиток світової економіки (183793)

Посмотреть архив целиком

МІНІСТЕРСТВО ОСВІТИ ТА НАУКИ УКРАЇНИ

КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ ЕКОНОМІЧНИЙ УНІВЕРСИТЕТ ІМ. ВАДИМА ГЕТЬМАНА

Кафедра економіко-математичних моделювання




ЛАБОРАТОРНА РОБОТА З ЕКОНОМЕТРІЇ № 2









Виконав:

студент ІІ курсу

спец. 6504, гр. № 5

Нікіфоров Клим

Перевірила:

Кузубова В.В.







Київ — 2009



ВАРІАНТ 11


  1. Визначимо середні значення та стандартні відхилення


Місяць

Прибуток

Інвестиції

ОВФ

ФРЧ

1

48

200

25

3

2

49

205

25

3,5

3

50

210

23

4

4

46

180

27

2,5

5

43

160

29

2

6

53

215

23

4,5

7

55

220

20

5

8

56

222

20

5

9

54

220

21

4,5

10

55

221

19

5,5

11

57

225

18

5,5

12

58

228

16

6

13

46

178

26

2,8

14

47

181

24

2,8

15

50

208

22

4,2

16

54

222

19

5,8

17

56

230

17

6

18

59

230

15

6,2

19

58

229

15

6,1

20

61

235

13

6,3

21

60

231

13

6,3

22

63

240

11

6,5

23

62

238

12

6,4

24

66

245

8

7

Середнє

54,41667

215,5417

19,20833

4,891667

Станд.відх.

6,035523

21,84526

5,548044

1,480575






  1. Виконаємо нормалізацію змінних за допомогою формул:



Функція нормалізації дозволяє перетворити інформацію в однакові одиниці виміру (стандартні відхилення)


В результаті нормалізації отримаємо:


Y*

X1*

X2*

X3*

-1,06315

-0,71144

1,043911

-1,27766

-0,89746

-0,48256

1,043911

-0,93995

-0,73178

-0,25368

0,683424

-0,60224

-1,39452

-1,62697

1,404399

-1,61536

-1,89158

-2,5425

1,764886

-1,95307

-0,23472

-0,0248

0,683424

-0,26454

0,09665

0,204087

0,142693

0,07317

0,262336

0,29564

0,142693

0,07317

-0,06904

0,204087

0,322937

-0,26454

0,09665

0,249863

-0,03755

0,410876

0,428021

0,43297

-0,21779

0,410876

0,593707

0,570299

-0,57828

0,748583

-1,39452

-1,71853

1,224155

-1,41274

-1,22884

-1,5812

0,863668

-1,41274

-0,73178

-0,34523

0,50318

-0,46716

-0,06904

0,29564

-0,03755

0,613501

0,262336

0,661852

-0,39804

0,748583

0,759393

0,661852

-0,75853

0,883666

0,593707

0,616076

-0,75853

0,816125

1,090764

0,890735

-1,11901

0,951207

0,925079

0,707629

-1,11901

0,951207

1,422136

1,119617

-1,4795

1,08629

1,25645

1,028064

-1,29926

1,018749

1,919193

1,3485

-2,02023

1,423997

  1. Розрахунок кореляційних матриць rxx та rxy


Знаходимо кореляційні матриці за формулами:


Транспонуємо матрицю Х*:


=


-0,71144

-0,48256

-0,25368

-1,62697

-2,5425

-0,0248

0,204087

0,29564

0,204087

0,249863

0,43297

0,570299

-1,71853

-1,5812

-0,34523

0,29564

0,661852

0,661852

0,616076

0,890735

0,707629

1,119617

1,028064

1,3485

1,043911

1,043911

0,683424

1,404399

1,764886

0,683424

0,142693

0,142693

0,322937

-0,03755

-0,21779

-0,57828

1,224155

0,863668

0,50318

-0,03755

-0,39804

-0,75853

-0,75853

-1,11901

-1,11901

-1,4795

-1,29926

-2,02023

-1,27766

-0,93995

-0,60224

-1,61536

-1,95307

-0,26454

0,07317

0,07317

-0,26454

0,410876

0,410876

0,748583

-1,41274

-1,41274

-0,46716

0,613501

0,748583

0,883666

0,816125

0,951207

0,951207

1,08629

1,018749

1,423997


Отримаємо:

1

-0,90857

0,960757

-0,90857

1

-0,95464

0,960757

-0,95464

1



0,947927

-0,98042

0,964746




Кожен елемент матриці rxx характеризує тісноту зв’язку однієї пояснювальної змінної з іншою. Парні коефіцієнти кореляції характеризують тісноту між двома змінними. Вони можуть змінюватись в межах від 1 до -1.



Тобто, вони є парними коефіцієнтами кореляції між пояснювальними змінними. Користуючись цими коефіцієнтами можна зробити висновок, що між змінними х1, х2, х3 існує зв’язок.






  1. Визначення детермінанту матриці r


0,006749


Детермінант матриці rxx є точковою мірою мультиколінеарності, в нашому випадку наближається до нуля, а отже мультиколінеарність існує.






  1. Розрахунок критерію




105,7992

= 7,815


Розраховане значення порівнюємо з табличним при вибраному рівні значущості і ступені свободи . Оскільки , то мультиколінеарність існує.






Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.