Проверка основного закона динамики вращательного движения твердого тела относительно неподвижной оси и определение коэффициента вязкости жидкостей (151810)

Посмотреть архив целиком

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

ГОУ ВПО «ЧЕРЕПОВЕЦКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»








Факультет общих математических и естественнонаучных дисциплин

Кафедра общей физики

ЛАБОРАТОРНАЯ РАБОТА №9

ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ВЯЗКОСТИ ЖИДКОСТЕЙ.










выполнил:

студент гр. 5СКб-11

Череповец, 2009/10 уч. год

проверил:

ассис. Герасимов Р.А.

Лабораторная работа № 9

ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ВЯЗКОСТИ ЖИДКОСТЕЙ.


Цель работы.

Знакомство с методом Стокса определения вязкостей жидкостей. Определение вязкости глицерина и касторового масла.

Теоретическое введение

В реальных жидкостях при перемещении одних слоев относительно других возникают более или менее значительные силы трения. Со стороны слоя, движущегося более быстро, на слой, движущейся медленнее, действует ускоряющая сила. Наоборот, со стороны слоя, движущегося медленнее, на более быстрый слой действует сила, замедляющая его движение.

Эти силы, называемые силами внутреннего трения, направлены по касательной к поверхности слоев. Свойство жидкости, связанное с наличием сил внутреннего трения, называется вязкостью.

Ньютон эмпирически установил, что силы внутреннего трения между двумя слоями могут быть рассчитаны по формуле:


(1)


где: η - коэффициент вязкости;

- градиент скорости, показывает изменение скорости жидкости в направлении, перпендикулярном к вектору скорости слоев;

S - площадь соприкосновения слоев.

Коэффициент вязкости зависит от вида жидкости и температуры. В СИ единицей является Пас - размерность кгм-1с-1. Существуют различные экспериментальные методы определения коэффициента вязкости. В данной работе используется метод падающего шарика (метод Стокса).

При определении коэффициента вязкости по методу Стокса наблюдают падение маленького шарика в жидкости. Установка представляет собой стеклянный цилиндр, наполненный исследуемой жидкостью. При движении шарика в жидкости он встречает сопротивление среды. Сопротивление возникает вследствие трения между слоями жидкости, прилежащим к поверхности шарика. Сила внутреннего трения, тормозящая движение шарика, определяется формулой Стокса:


FСТ = 6r = 3d (2)


где: r (d) - радиус (диаметр) шарика;

- коэффициент вязкости;

- скорость движения шарика в жидкости.

Силу внутреннего трения, действующую на падающий в жидкости шарик, можно рассчитать по формуле Стокса, если при движении шарика за ним не образуется вихрей (ламинарное обтекание тела). Этого условия можно достичь, бросая в жидкость маленькие шарики, либо шарики из материала с чуть большей плотностью, чем плотность жидкости.

На шарик при движении в жидкости действуют, кроме силы Стокса еще две силы - сила тяжести и Архимедова сила. Вблизи поверхности жидкости равнодействующая этих трех сил отлична от нуля. В зависимости от того, как попадает шарик в жидкость (шарик падает с некоторой высоты над жидкостью h>0, или опускается с ее поверхности h = 0), его скорость с течением времени меняется.


FR=P - (FA+FСТ) (3)

FR = f(t)


Можно строго показать, что изменение величины скорости происходит как показано на рис.1, и, по истечении некоторого времени, скорость достигает предельного значения. Предельное значение скорости определяется массой и размерами шарика и вязкостью жидкости.

Теория позволяет оценить расстояние от поверхности жидкости, ниже которого движение шарика будет происходить с постоянной скоростью. На экспериментальной установке это расстояние указано меткой. Установившееся значение скорости может быть вычислено по формуле:


(4)


Рис.1



где: - расстояние между метками;

t - время движения шарика между ними.

При равномерном движении шарика после верхней метки, равнодействующая всех сил равна нулю и из (3) имеем:


P= FA+FСТ (5)


Сила тяжести


(6)


Выталкивающая сила Архимеда


(7)


где: Ш и Ж - плотность материала шарика и жидкости соответственно. Из формул (2), (4) - (7) для расчёта коэффициента вязкости жидкости получим выражение:


(8)


ПРИБОРЫ И ПРИНАДЛЕЖНОСТИ:

Два цилиндрических сосуда с исследуемыми жидкостями ( глицерин и касторовое масло); термометры; микрометр; шарики (свинцовые или стальные); линейка; секундомер.

МЕТОДИКА ИЗМЕРЕНИЙ

Измерительные приборы и их погрешности:


Измерительная

физическая

величина

Прибор

Предел измерений

Цена деления

Погрешность

D

Микрометр

25мм

0,01мм

±0,004мм

t

Секундомер механический


0,2с

±0,2с

h

Линейка(сталь)

500мм

1мм

±0,2мм


Таблица измерений:

Род жидкости

Температура жидкости

Диаметр шарика

Время падения

d

dср

Касторка

23 С

1. 3.35мм

2. 3.40мм

3. 3.38мм

3.37мм

3.9с



  1. .32мм

  2. .30мм

  3. .34мм

3.32мм

3.9с



  1. 3.26мм

  2. 3.24мм

  3. 3.25мм

3.25мм

3.8с

Глицерин



23 С

  1. 3.33мм

  2. 3.38мм

  3. 3.36мм

3.35мм



1. 3.30мм

2. 3.28мм

3. 3.32мм

3.30мм



1. 3.26мм

2. 3.25мм

3. 3.25мм

3.25мм

4.8с


Вычисления:

Эксперимент с касторовым маслом:



ρш=7.8∙103кг\м3

ρж=0.95∙103 кг\м3

𝓁=18см=0.18м


0.9175 Па∙с

0.8906 Па∙с

0.8316 Па∙с

=0.8799 Па∙с

Для вычисления погрешности используем формулу:



t = 0.2с



=0.000015м

Эксперимент с глицерином:



ρш=7.8∙103кг\м3

ρж=1.3∙103 кг\м3

𝓁=18см=0.18м



1.1031 Па∙с

1.0705 Па∙с

0.9967 Па∙с

=1.0567 Па∙с

Для вычисления погрешности используем формулу:



t = 0.2c



=0.018м

Конечный результат:

У касторового масла вязкость составила: 0.8799 ± 0.0467) Па∙с

У глицерина вязкость составила: 1.0567 ± 0.0017 ) Па∙с

Вывод: Проведя эксперимент, мы познакомились с методом Стокса для определения вязкостей жидкостей и определили вязкость касторового масла и глицерина. У касторового масла вязкость составила: 0.8799 ± 0.0467) Па∙с, а у глицерина вязкость составила: 1.0567 ± 0.0017) Па∙с.


МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

ГОУ ВПО «ЧЕРЕПОВЕЦКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»







Факультет общих математических и естественнонаучных дисциплин

Кафедра общей физики

ЛАБОРАТОРНАЯ РАБОТА №23

Проверка основного закона динамики вращательного движения твердого тела относительно неподвижной оси










выполнил:

студент гр. 5СКб-11

Череповец, 2009/10 уч. Год

проверил:

ассис. Герасимов Р.А.

Введение


Абсолютно твердое тело можно рассматривать как систему материальных точек, расстояние между которыми неизменно.

Абсолютно твердому телу доступны следующие виды движения: поступательное, вращательное и колебательное.

  1. Поступательное движение твердого тела – это такое движение, при котором любая прямая линия, проведенная через какие – нибудь две точки тела, перемещается, оставаясь параллельной самой себе. При этом движении все точки тела совершают одинаковые перемещения, обладают одинаковыми скоростями и одинаковыми ускорениями а.

Основной закон динамики поступательного одномерного движения твердого тела – второй закон Ньютона – записывается так:


или


где - векторная сумма всех сил, действующих на тело. Ускорение, приобретаемое телом, пропорционально действующей силе и обратно пропорционально массе тела.

  1. Вращательное движение твердого тела относительно неподвижной оси – это такое движение, при котором в теле имеются по крайней мере две неподвижные точки. Прямую, проходящую через эти точки, называют осью вращения (очевидно, все точки, принадлежащие оси, также неподвижны). Остальные точки тела описывают окружности с центрами на оси.


Случайные файлы

Файл
170109.rtf
stratification.doc
13062-1.rtf
19560-1.rtf
178643.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.