Исследование сегнетоэлектриков (150388)

Посмотреть архив целиком

Кафедра конструирования и технологии электрической изоляции











Лабораторная работа

Тема: Исследование сегнетоэлектриков

















2007


Цель работы: исследование основных диэлектрических свойств сегнетоэлектриков в зависимости от напряженности внешнего электрического поля и температуры осциллографическим методом.


Основные сведения из теории


Сегнетоэлектриками называется особая группа диэлектриков, которая ниже определенной температуры или в некотором интервале температур обладает самопроизвольной (спонтанной) поляризацией, т.е. находятся в поляризованном состоянии при отсутствии внешнего электрического поля. Свое название они получили от сегнетовой соли, которая явилась исторически первым сегнетоэлектриком.

Все известные сегнетоэлектрики можно разделить на две основные группы: протонные сегнетоэлектрики – вещества, содержащие водород (сегнетова соль, смешанные кристаллы, родственные сегнетовой соли, дигидрофосфаты и дигидроарсенаты калия, аммония и их дейтеро-замещенные соли) и вещества не содержащие водорода (титанат бария, титанат свинца, родственные по структуре изоморфные смеси титаната бария и другие соединения). По структуре, составу и свойствам эти две группы значительно отличаются друг от друга. Первая группа сегнетоэлектриков характеризуется сложной структурой, в них причиной возникновения спонтанной поляризации принято считать протон. Эти кристаллы имеют спонтанную поляризацию при низких температурах, отличаются хрупкостью, вследствие чего их практическое применение затруднено и несколько ограничено.

Вторую группу составляют беспротонные сегнетоэлектрики, отличительной особенностью структуры которых является октаэдрическое окружение ионами кислорода меньшего по размерам катиона. Это группу называют сегнетоэлектриками кислородно-октаэдрического типа. Благодаря высоким электрическим характеристикам, простоте получения, разнообразию свойств сегнетоэлектрики второй группы находят широкое применение в различных областях техники.

Наличие спонтанной поляризации определяет ряд особых свойств сегнетоэлектриков.

- Высокая диэлектрическая проницаемость.

- Нелинейная зависимость диэлектрической проницаемости от температуры и наличие точки Кюри (рис. 1).

- Нелинейная зависимость вектора спонтанной поляризации и диэлектрической проницаемости от напряженности внешнего электрического поля (рис. 2).

- Диэлектрический гистерезис (рис. 3).

- Пьезоэффект.


Рис. 1. Температурная зависимость диэлектрической проницаемости сегнетоэлектрика

Рис. 2. Зависимость поляризованности Р и диэлектрической проницаемости  сегнетоэлектрика от напряженности внешнего электрического поля


Из теорий сегнетоэлектричества известны: термодинамическая – наиболее полная и строгая, и теория локальных минимумов – менее строгая, но более наглядная.

Самопроизвольная поляризация возникает в веществах, имеющих доменную структуру. Домен – макроскопическая область, внутри которой электрические моменты отдельных частиц равны по величине и расположены параллельно.

Согласно термодинамической теории доменная структура в веществе возникает в том случае, если при этом за счет упорядоченного расположения частиц обеспечивается минимум полной энергии системы.

Для характеристики степени упорядоченности частиц в сегнетоэлектрике Гинзбург выбрал величину квадрата вектора поляризованности, так как величина свободной энергии не зависит от его направления, и свободную энергию однодоменного изотропного ненапряженного кристалла сегнетоэлектрика выразил в виде следующего ряда:


(1)


где F0 – свободная энергия кристалла в параэлектрической фазе;

P – модуль вектора поляризованности;

коэффициенты разложения, зависящие от свойств вещества, причем

= const(T).


Рис. 3. Петля гистерезиса cегнето-электрика: PR – остаточная поляризован-ность; Ec – коэрцитивное поле

Рис. 4. Зависимость свободной энергии F сегнетоэлектрика от поляризованности P

(PS – спонтанная поляризованность)


Из анализа соотношения (1) следует, что устойчивое состояние спонтанной поляризации, соответствующее минимуму свободной энергии:



Возможно только после того, как коэффициент при переходе через некоторую температуру T0 изменит знак и приобретет отрицательное значение (рис. 4):


(2)


Физическая картина образования доменной структуры у сегнетоэлектриков кислородно-октаэдрического типа (титаната бария) описывается теорией локальных минимумов, предложенных Мэзоном и Маттиасом. Элементарная ячейка титаната бария представляет собой куб, в вершинах которого находятся ионы Ba2+, в центрах – ионы O2–, внутри куба – ион Ti4+ (рис. 5).


Рис. 5. Элементарная ячейка титанита бария


Ион титана располагается в пределах кислородного октаэдра, размеры которого много больше размеров иона титана. Это дает возможность иону титану колебаться, смещаясь к одному из ионов кислорода, и образовывать с ним частично ковалентную связь. Ковалентная связь удерживает ион титана в смещенном состоянии. Поскольку в этом случае центры положительного и отрицательного зарядов не совпадают, возникает электрический момент элементарной ячейки. Этот момент действует на соседние ионы титана, заставляя их смещаться в том же направлении. В результате появляется область кристалла с одинаково ориентированными электрическими моментами отдельных ячеек.

При кристаллизации вещества все 6 возможных направлений смещения иона титана являются равновероятными, поэтому возникающие домены взаимно уравновешиваются и кристалл в целом не обладает электрическим моментом.

При наложении внешнего электрического поля облегчается переброс ионов титана к тем ионам кислорода, образование ковалентной связи с которыми приводит к появлению момента, т. е. наблюдается рост доменов в направлении внешнего поля. Этим объясняется возрастание спонтанной поляризации с ростом электрического поля. Насыщение соответствует моменту полной ориентации всех доменов вдоль поля (см. рис. 2).

С увеличением температуры возрастает энергия теплового движения, благодаря чему облегчается разрушение старой ковалентной связи и образование новой, при которой электрический момент элементарной ячейки направлен вдоль поля. Таким образом, в случае многодоменного кристалла нагрев облегчает переориентацию доменов и приводит к увеличению спонтанной поляризации. При достижении определенной температуры хаотическое движение иона титана становится настолько интенсивным, что он колеблется внутри кислородного октаэдра, не создавая устойчивой ковалентной связи ни с одним из ионов кислорода. Можно считать, что в среднем он находится в центре октаэдра, и электрический момент элементарной ячейки становится равным нулю. Спонтанная поляризация исчезает. В этом физический смысл температуры Кюри.


Рис. 6. Зависимость диэлектрической проницаемости сегнетоэлектрика от температуры


Согласно термодинамической теории сегнетоэлектричества диэлектрическая проницаемость при воздействии внешнего электрического поля и температурах, близких к температуре Кюри, изменяется следующим образом (рис. 6):



(3)



(4)


где – производная от по в точке Т = Т0.



Термодинамическая теория позволяет объяснить явление диэлектрического гистерезиса.


Расчетная часть


Начальные условия:



h - толщина сегнетоэлектрика


d – диаметр обкладки


S - площадь сегнетоэлектрика:


П - площадь петли гистерезиса .


Подать напряжение 60 В на образцовый конденсатор. На экране осциллографа будет видна наклонная прямая, соответствующая зависимости заряда образцового конденсатора от приложенного напряжения.

Определить отклонения X и Y и вычислить:

а) масштаб по горизонтальной оси электронно-лучевой трубки осциллографа:


,


где -амплитуда приложенного напряжения;

- показание вольтметра;

- отклонение от горизонтальной оси, соответствующее амплитуде приложенного напряжения;

б) масштаб по вертикальной оси электронно-лучевой трубки осциллографа:


,


где -заряд, соответствующий амплитудному значению напряжения на обкладках образцового конденсатора ;

-напряжение на образцовом конденсаторе,


;


- ёмкость градуировочного конденсатора

- отклонение от вертикальной оси.

в) диэлектрическая проницаемость сегнетоэлектрика:


,


где - ёмкость конденсатора из сегнетоэлектрика, [Ф]


,


- толщина образца

- площадь обкладок



г) тангенс угла диэлектрических потерь сегнетоэлектрика:

Диэлектрические потери в общем случае выражаются уравнением


.


Отсюда



Мощность потерь вычисляется по формуле


,


где - площадь петли гистерезиса, ;


Случайные файлы

Файл
161847.rtf
154026.rtf
38275.doc
105867.rtf
327.doc




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.