ЭВМ с использованием математического пакета MathCad в среде Windows 98 для решения системы дифференциальных уравнений (49461)

Посмотреть архив целиком

Министерство Топлива и Энергетики Украины

СЕВАСТОПОЛЬСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ

ЯДЕРНОЙ ЭНЕРГИИ И ПРОМЫШЛЕННОСТИ



Практическое занятие №4

по дисциплине

«Использование ЭВМ в инженерных расчетах электротехнических систем»



Тема : ЭВМ С ИСПОЛЬЗОВАНИЕМ МАТЕМАТИЧЕСКОГО ПАКЕТА MathCad В СРЕДЕ WINDOWS 98 ДЛЯ РЕШЕНИЯ СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ.


Вариант №8





Выполнил: студент группы ЭСЭ 22-В

Левицкий П.В.

Проверил:_______________________





Севастополь 2008


ПЛАН


1. Данные варианта задания.

2. Решение системы дифференциальных уравнений, заданной в нормальной форме Коши

2.1 Теоретическое обоснование

2.2 Теоретическое обоснование применения преобразования Лапласа

2.3 Общее решение однородной системы

2.3.1 Определение аналитических зависимостей изменения переменных состояния системы при заданных начальных условиях и отсутствии внешнего воздействия с использованием переходной матрицы.

2.3.2 Определение аналитических зависимостей изменения переменных состояния системы при заданных начальных условиях и отсутствии внешнего воздействия с использованием функции Mathcad

2.3.3 Определение аналитических зависимостей изменения переменных состояния системы при заданных начальных условиях и отсутствии внешнего воздействия с использованием преобразования Лапласа

2.4Частное решение неоднородной системы дифференциальных уравнений

при заданном внешнем воздействии и нулевых начальных условиях

2.4.1 Решение с применением функций MATHCAD

2.4.2 Решение с применением преобразования Лапласа

2.5Частное решение неоднородной системы дифференциальных уравнений

при заданном внешнем воздействии y=cos(2t) и нулевых начальных условиях

2.5.1 Решение с помощью переходной матрицы

2.5.2 Численный метод решения системы дифференциальных уравнений при нулевых начальных условиях и заданном внешнем воздействии y=cos(2t) c помощью MATHCAD.

2.5.3 Решение системы дифференциальных уравнений при нулевых начальных условиях и заданном внешнем воздействии y=cos(2t) c помощью преобразования Лапласа

2.6 Решение неоднородной системы дифференциальных уравнений

при заданном внешнем воздействии и начальных условиях

2.6.1 Решение с помощью функции MATHCAD

2.6.2 Решение с помощью преобразования Лапласа

2.6.3 Решение с помощью преобразования Лапласа (способ второй)

3. Выводы по работе №4.



1. Данные варианта задания


Система линейных дифференциальных уравнений в форме Коши



Таблица № 1

вар

Ко э ф ф и ц и е н т ы с и с т е м ы д и ф ф е р н е ц и а л ь н ы х у р а в н е н и й

Начальные условия

а11

а12

а13

а14

а21

а22

а23

а24

а31

а32

а33

а34

а41

а42

а43

а44

b0

b1

b2

b3

х0(0)

х1(0)

х2(0)

х3(0)

8

-2,4

1,4

1,6

-1,8

-2,6

-12

0,6

4,0

-0,8

-0,85

-0,1

0,2

0,4

1,2

1,0

-1,5

0,1

0,2

0

0,6

0

0

-0.8

5.1


Электротехническая система описывается заданной системой линейных дифференциальных уравнений с 4 искомыми функциями х0(t), x1(t),x2(t), x3(t):


Матрицы системы:




2. Решение системы дифференциальных уравнений, заданной в нормальной форме Коши


2.1 Теоретическое обоснование


Можно записать в виде матричного дифференциального уравнения:


или на основании правила дифференцирования матриц:



Совокупность решений системы дифференциальных уравнений будем искать в форме



здесь

- общее решение однородной системы дифференциальных уравнений


X(t) - частное решение неоднородной системы дифференциальных уравнений .

Общее решение однородной системы дифференциальных уравнений

Для определения общего решения системы дифференциальных уравнений необходимо:

  • найти собственные значения λi матрицы А, используя выражение:



  • найти переходную матрицу:



где Р – матрица, составленная из собственных векторов vi матрицы А, которые определяются из выражения:

Аvi = λi vi i = 1,2..n - одно из произвольных значений вектора-столбца (обычно принимают vi1 = 1)


Тогда причем - диагональная матрица.


Общее решение однородной системы дифференциальных уравнений будет иметь вид:


Частное решение неоднородной системы дифференциальных уравнений ищется:



Общее решение неоднородной системы дифференциальных уравнений тогда будет иметь вид:



В данной работе мы будем определять аналитические зависимости изменения переменных состояния системы численными методами с использованием переходной матрицы, а также с помощью специальных функций MATHCAD.


2.2 Теоретическое обоснование применения преобразования Лапласа


Классический метод решения системы дифференциальных уравнений высокого порядка связан с большими вычислительными затратами, особенно при определении частного решения неоднородной системы ( при вычислении интеграла). В этом случае целесообразно использовать преобразования Лапласа, что существенно упрощает вычисления и дает значительно большую обозримость решения. Можно отметить следующие преимущества метода преобразования Лапласа:

  1. Для решения системы дифференциальных уравнений методом преобразования Лапласа необходимо решить только одну-единственную систему алгебраических уравнений, а именно систему, определяющую изображение Xi(s) искомых функций хi(t).

  2. Начальные значения входят в эту систему с самого начала и поэтому учитываются автоматически, в то время как при применении классического метода предварительно необходимо найти сначала общие решения (для систем уравнений это весьма сложно) и затем подобрать постоянные интегрирования так, чтобы были удовлетворены начальные условия, что приводит к необходимости решения еще одной системы линейных уравнений. Часто встречающийся на практике случай нулевых начальных значений приводит при применении преобразования Лапласа к особенно простым вычислениям.

  3. Наконец, важное преимущество заключается в том, что каждая неизвестная функция может быть вычислена сама по себе, независимо от вычисления остальных неизвестных функций, что при использовании классическим методом при заданных начальных условиях в общем случае невозможно. Это преимущество особенно ценно, когда практический интерес представляет определение только одной-единственной, неизвестной, вычисление же остальных неизвестных необязательно.


2.3 Общее решение однородной системы


2.3.1 Определение аналитических зависимостей изменения переменных состояния системы с использованием переходной матрицы при заданных начальных условиях и отсутствии внешнего воздействия.

Вычисление собственных значений квадратной матрицы А:

Функция identity (4) создаёт единичную матрицу размером 4*4

С помощью символьного процессора можно вычислить аналитически значение переменной, при котором выражение обращается в ноль. Для этого:

  • Введите выражение.

  • Выделите переменную, относительно которой будет решаться уравнение, приравнивающее выражение к нулю.

  • Выберите в меню Symbolics (Символика) пункт Variable / Solve (Переменная / Решить) .

В нашем случае, чтобы найти значения λ, которые являются корнями характеристического уравнения запишем выражение в Mathcad.



Для вычисления собственных значений матрицы А можно применить и функцию eigenvals, ключевое слово float применяется вместе со значением точности вывода результата с плавающей точкой.



Как видно, характеристическое уравнение имеет 4 различных корня, которые являются характеристическими числами матрицы А. Каждому характеристическому числу соответствует свой собственный вектор. Характеристическому числу λ1 соответствует собственный вектор р11; р21; р31; р41; числу λ2 соответствует собственный вектор р12; р22; р32; р42, числу λ3 соответствует собственный вектор р13; р23; р33; р43 числу λ4 соответствует собственный вектор р14; р24; р34; р44.

Тогда система дифференциальных уравнений будет иметь 4 решения. Первое соответствует корню λ1. Второе решение соответствует корню λ2. Третье решение соответствует корню λ3.Четвёртое решение соответствует корню λ4.

Преобразующую матрицу Р определяем по матрице А, используя дополнительную функцию eigenvecs(A) — вычисляет матрицу, содержащую нормированные собственные векторы, соответствующие собственным значениям матрицы А; n-й столбец вычисляемой матрицы соответствует собственному вектору n-го собственного значения, вычисляемого eigenvals;


Случайные файлы

Файл
153742.rtf
151450.rtf
90115.rtf
143643.doc
55690.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.