Экономико-математические методы и модели (86241)

Посмотреть архив целиком














Экономико-математические методы и модели







Методически указания и контрольные задания для студентов

очной и заочной формы обучения.


















г. Ставрополь 2007г.


Настоящее пособие предназначено для студентов экономических специальностей. Учебный план изучения курса рассчитан на 75 часов и предусматривает выполнение контрольной работы для заочной формы обучения.

В пособии приведены решения задач по темам, соответствующим учебному плану, даны необходимые методические указания и приведены задания для контрольной работы. Это пособие может быть использовано студентами очного и заочного отделения для самостоятельной работы и подготовки к зачёту.


Введение

В настоящее время процессы принятия решений в экономике опираются на достаточно широкий круг экономико-математических методов и моделей. Ни одно серьёзное решение, затрагивающее управление деятельностью отраслей и предприятий, распределения ресурсов, изучение рыночной конъюнктуры, прогнозирование, планирование и т.п., не осуществляется без предварительного математического исследования конкретного процесса или его частей.

В этой связи изучение дисциплины «Экономико-математические методы и модели» направлено как на формирование у студентов понимания роли современной математики в экономике, так и на изучение наиболее важных экономико-математических методов исследования моделей и задач оптимизации.

Задачи данной дисциплины состоят в изучении математических методов СЭП, применения базовых методов математического моделирования СЭП при решении оптимизационных задач и выработке навыков решения трудоёмких прикладных экономико-математических задач с помощью компьютерных технологий.

Цель изучения данной дисциплины – подготовка специалиста экономического профиля к сознательному использованию математических методов исследования СЭП на основе соответствующих базовых моделей.

Изучение дисциплины предусматривает сочетание лекций, практических занятий и самостоятельную работу студентов. На лекциях излагается содержание дисциплины, проводится анализ основных математических понятий и методов. Практические занятия ориентированны на выработку у студентов умения и навыков решения типовых экономических задач. Руководствуясь принципом повышения уровня фундаментальной математической подготовки студентов с усилением её прикладной экономической направленности, автором предлагаются наиболее экономически значимые задачи, представляющие самостоятельный интерес и дающие возможность относительно продуктивно освоить алгоритм их решения при отсутствии учебника.

После изучения дисциплины «Экономико-математические методы и модели» студент должен:

  • иметь представление о методах системного анализа и управления СЭП;

  • знать основные понятия, определения и базовые математические методы, используемые для построения моделей СЭП;

  • уметь проводить расчёты и делать оценки параметров для базовых математических моделей СЭП;

  • уметь решать прикладные экономико-математические задачи, опираясь на базовые знания по математике, соответствующие Государственному образовательному стандарту.


Общие методические указания

Для более полного, уверенного освоения студентами навыков решения задач по дисциплине «Экономико-математические методы и модели» предлагаются данные методические указания. Автор руководствовался общими целеполагающими принципами изучения данной дисциплины, а также принципом повышения уровня фундаментальной математической подготовки студентов для понимания значимости построения и исследования математических моделей в экономике.

Приведённые методические указания могут быть использованы при проведении самостоятельных и контрольных работ, собеседований при сдаче зачёта.

При выполнении контрольной работы студентам заочного отделения необходимо руководствоваться следующими указаниями:

- на обложке указываются фамилия и инициалы студента, полный шифр специальности, группа, дата регистрации, фамилия и инициалы преподавателя-рецензента;

- решение всех задач и пояснения к ним должны быть достаточно подробными; вычисления и чертежи – полными и аккуратными.

- для удобства рецензирования рекомендуется оставлять поля;

- номер контрольной работы соответствует последней цифре его учебного шифра.

Контрольная работа предоставляется в деканат не позднее 10 дней до начала сессии. При сдаче зачёта студент должен дать пояснения к решённым заданиям.


Рекомендуемая литература:

  1. Исследование операций в экономике: Учеб. пособ. / под ред. Н.Ш.Кремера./ – М.: ЮНИТИ, 2000. - 407 с.

  2. Практикум по высшей математике для экономистов: Учеб. пособие для вузов / Кремер Н.Ш. и др.; под ред. проф. Н.Ш.Кремера – М.: ЮНИТИ – ДАНА, 2005. – 423 с.

  3. Акулич И.Л. Математическое программирование в примерах и задачах: Учеб. пособ. М..: Высшая школа, 1986. - 319 с.

  4. Морозов В.В., Сухарев А.Т., Фёдоров В.В. Исследование операций в примерах и задачах.: Учеб. пособие. М.: Высшая школа, 1986. – 287 с.

  5. Вентцель Е.С. Исследование операций. Задачи, принципы, методология. Учеб. пособие для студентов втузов. – М.: Высшая школа, 2001. – 208 с.

  6. Замков О.О., Толстопятенко А.В., Черемных Ю.Н. Математические методы в экономике: Учебник.2-е изд. – М.: МГУ им. М.В. Ломоносова, Издательство «Дело и Сервис», 1999. – 368 с.

  7. Монахов А.В. Математические методы анализа экономики. – Спб: Питер, 2002. – 176 с.

  8. Экономико-математические методы и прикладные модели: Учеб. пособие для вузов /В.В. Федосеев, А.Н. Гармаш, Д.М. Дайитбегов и др., Под ред. В.В. Федосеева. – М.: ЮНИТИ, 1999. -391 с.

Глоссарий терминов.

Аддитивность - свойство величин, состоящее в том, что значение величины, соответствующее целому объекту, равно сумме значе­ний величин, соответствующих его частям при любом разбие­нии объекта на части. Характеристика системы аддитивна, если она равна сумме тех же характеристик для всех составляющих систему подсистем и элементов.

Адекватность модели - ее соответствие моделируемому объекту или процессу. При моделировании имеется в виду адекватность не вообще, а по тем свойствам мо­дели, которые для исследования считаются существенными.

Аппроксимация - приближенное выражение сложной функции с помощью более простых, что часто значительно упрощает реше­ние задачи.

Вариантные прогнозы - прогнозы, основанные на сопоставлении различных вариантов возможного развития экономики при раз­ных предположениях относительно того, как будет развиваться техника, какие будут приниматься экономические меры и т. д.

Векторная оптимизация - решение задач математического программи­рования, в которых критерий оптимальности представляет собой вектор, компонентами которого являются в свою очередь различ­ные несводимые друг к другу критерии оптимальности подсистем, входящих в данную систему, например критерии разных социаль­ных групп в социально-экономическом планировании.

Верификация имитационной модели - проверка соответствия ее по­ведения предположениям экспериментатора.

Вероятностная модель - модель, которая в отличие от детерминиро­ванной модели содержит случайные элементы. Таким образом, при задании на входе модели некоторой совокупности значе­ний, на ёе выходе могут получаться различающиеся между со­бой результаты в зависимости от действия случайного фактора.

Взаимозаменяемость ресурсов — возможность использования разных ресурсов для достижения оптимума. Именно этим обусловлена проблема выбора: там, где нет заменяемости, нет и выбора, и тогда фундаментальное понятие оптимальности теряет смысл.

Генетический прогноз («поисковый») — прогноз, показывающий, к каким состояниям придет прогнозируемый объект в заданное время при определенных начальных условиях.

Глобальное моделирование или моделирование глобального разви­тия — область исследований, посвященная разработке моделей наиболее масштабных социальных, экономических и экологиче­ских процессов, охватывающих земной шар.

Градиентные методы решения задач математического программиро­вания - методы, основанные на поиске экстремума (максимума или минимума) функции путем последовательного перехода к нему с помощью градиента этой функции.

Декомпозиционные методы решения оптимальных задач - основан­ные на рациональном расчленении сложной задачи и решении отдельных подзадач с последующим согласованием частых ре­шений для получения общего оптимального решения.

Дескриптивная модель - модель, предназначенная для описания и объяснения наблюдаемых фактов или прогноза поведения объ­ектов - в отличие от нормативных моделей, предназначенных для нахождения желательного состояния объекта (например, оптимального).

Детерминированная модель - аналитическое представление законо­мерности, операции и т. п., при которых для данной совокупно­сти входных значений на выходе системы может быть получен единственный результат. Такая модель может отображать как вероятностную систему (тогда она является некоторым ее упро­щением), так и детерминированную систему.

Детерминированная система - такая система, выходы которой (ре­зультаты действия, конечные состояния и т.п.) однозначно оп­ределяются оказанными на нее управляющими воздействиями.


Случайные файлы

Файл
175380.rtf
157839.rtf
my.doc
59553.rtf
24472-1.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.