Дифференциальные уравнения неустановившегося движения воздуха по рудничным воздуховодам (23203)

Посмотреть архив целиком

Дифференциальные уравнения неустановившегося движения воздуха по рудничным воздуховодам

Асп. Баглей С.Г., проф. Воронин П.А.

Кафедра теоретической электротехники и электрических машин.

Северо-Кавказский государственный технологический университет

Произведен вывод нелинейной системы дифференциальных уравнений в частных производных для расчета давления и скорости движения воздуха по воздуховодам при его нестационарном квадратичном движении. При этом использованы: формула Дарси-Вейсбаха – формула потерь давления на трение; второй закон Ньютона для определения инерционных потерь давления и уравнение неразрывности движения потока воздуха. Приведен пример расчета неустановившегося расхода воздуха в коротком воздуховоде при подаче на его вход постоянного давления.

Переходные процессы движения воздуха в трубопроводах могут продолжаться относительно долго и существенно влиять на работу вентиляторной установки, особенно на работу электродвигателя. Особое значение имеют переходные процессы воздушного потока в горных выработках и трубопроводах, в которых время распространения звука от одного конца к другому значительно больше времени пуска двигателя вентилятора или времени открытия задвижки.

Задача настоящих исследований состоит в том, чтобы дать методику получения дифференциальных уравнений движения воздуха по трубопроводам, удобных для практического их решения.

Впервые связь между потерями напора на трение и средней по сечению воздуховода скоростью (или расходом воздуха) выявлена в XVIII в., когда была получена формула Дарси – Вейсбаха [1, стр.170; 2, стр.130].

Потеря давления на трение при движении воздуха по трубам по формуле Дарси – Вейсбаха имеет вид:

(1)

где ∆ – обозначение разности; р – давление (Па = Н/м2) [3]; – коэффициент гидродинамического трения (б/р) [1]; D – внутренний диаметр трубы (м); v – средняя по поперечному сечению воздухопровода скорость движения воздуха (м/с);

объемный вес воздуха (Н/м3) при давлении окружающей среды [1, 3];

ускорение силы тяжести (м/с2); ∆х – длина участка воздуховода (м).

Для преобразования уравнения (1) учтем нижеследующее. Объемный вес воздуха (удельный вес) (Н/м3) выражается формулой [3]:

(2)

где – плотность воздуха (кг/м3) при давлении окружающей среды [3]. Соотношение между гидравлическим радиусом Rг и диаметром D круглой трубы имеет вид:

(3)

где S – площадь поперечного сечения воздухопровода (потока) (м2),

χ – смоченный периметр воздуховода (м).

Рис. 1. Конструктивная схема воздуховода. Условия равновесия

давлений (а) и скоростей (б) на бесконечно малом участке

воздуховода длиной d x.

В формуле (1) устремим длину трубы ∆х к бесконечно малой величине dx. Тогда получим дифференциал потерь давления. Кроме этого, подставим в это выражение значения формул (2) и (3). В результате получим выражение потерь давления на трение на бесконечно малом участке воздуховода (рис.1,а), т. е.

(4)

Здесь давление р(x,t) и скорость v(x,t) являются функциями двух переменных – расстояния от начала воздуховода до рассматриваемого сечения его (х) и времени от начала переходных процессов до рассматриваемого момента (t).

При неустановившемся движении воздуха в воздуховодах существуют и инерционные потери давления. По второму закону Ньютона [4] инерционные потери давления на бесконечно малой длине воздуховода выражаются следующим дифференциалом (рис.1,а):

(5)

В соответствии с условием равновесия давлений на границах бесконечно малого участка воздуховода dx (рис.1,а) можно записать

(6)

Одинаковые слагаемые в левой и в правой частях равенства (6) взаимно уничтожаются. Подставив в выражение (6) формулы (4) и (5), после сокращения на d x получим первое дифференциальное уравнение для расчета неустановившегося движения воздуха по воздуховодам, выраженное через давление и скорость движения воздуха, а именно:

(7)

В систему дифференциальных уравнений расчета неустановившихся процессов при движении воздуха по трубам кроме уравнения (7) должно входить и уравнение неразрывности потока. Развернутое дифференциальное уравнение неразрывности [4, 5] при движении воздуха по трубам имеет следующий вид:

(8)

В своих исследованиях И.А.Чарный [6] показал, что для капельной жидкости последнее слагаемое левой части равенства уравнения (8) представляет собой величину второго порядка малости. Поэтому этим слагаемым следует пренебречь. Кроме того, И.А.Чарный доказал, что воздух по своим аэродинамическим свойствам относится к капельным жидкостям. С этим перекликается и заключение Л.И. Седова [5] о том, что есть физические характеристики, остающиеся во время движения постоянными в индивидуальном объеме сплошной среды.

В свете вышесказанного дифференциальное уравнение неразрывности потока воздуха в вентиляционных воздуховодах имеет следующий вид:

(9)

Уравнение равновесия скоростей на границах бесконечно малой длины d x в соответствии с обозначениями на рис.1,б имеет вид:

(10)

После взаимного уничтожения одинаковых слагаемых, стоящих в левой и в правой частях равенства (10), получим выражение дифференциала скорости воздуха, т. е.

(11)

Подставив выражение (9) в формулу (11), получим значение дифференциала скорости на бесконечно малой длине воздуховода:

(12)

В уравнении неразрывности (9) знак минус указывает на то, что на бесконечно малом участке d x происходит уменьшение скорости при изменении плотности воздуха. А это для плотных воздуховодов обозначает, что уравнение (9) выражает собой и сжатие воздуха.

Преобразуем дифференциальное уравнение (9). Известно, что скорость звука с (м/с) при изотермическом процессе распространения возмущения в воздухе имеет выражение [4]:

(13)

где р – давление (Па), ρ – плотность воздуха (кг/м3).

Частный дифференциал плотности воздуха, исходя из выражения (13), подставим в формулу (9). В результате получим уравнение неразрывности в следующем виде:

(14)

Это и есть второе дифференциальное уравнение неустановившегося движения воздуха по рудничным воздуховодам.

Обычно уравнения (7) и (14) записывают в виде одной системы уравнений. В результате получается система дифференциальных уравнений в частных производных второго порядка, описывающая переходные процессы в воздушных потоках рудничных воздуховодов, а именно:

(15)

Такая же система уравнений, но другим путем была получена И.А. Чарным [6]. Эта система дифференциальных уравнений является нелинейной, так как в первом уравнении зависимая переменная – скорость – стоит в квадрате. Решение такой системы дифференциальных уравнений затруднительно. Поэтому И.А. Чарный [6] предложил линеаризовать в первом уравнении первое слагаемое в правой части равенства (15). Он предложил считать постоянным среднее значение по длине воздуховода и времени следующего коэффициента:

(16)

где 2а – линеаризованный коэффициент аэродинамического сопротивления (1/с) [6], λ – коэффициент трения воздуха (б/р), v – средняя по сечению и по времени скорость движения воздуха в данном поперечном сечении воздуховода во время переходного процесса (м/с), Rг – гидравлический радиус воздуховода (м).

При движении воздуха с квадратичным законом сопротивления строят график – квадратичную параболу в функции скорости v (рис.2), на котором выбирают участок кривой, ограниченный предельными скоростями движения воздуха во время переходного процесса.

Рис.2. Графики для определения линеаризованного коэффициента аэродинамического сопротивления (2а). v1 – наименьшая и v2 – наибольшая скорости движения воздуха во время переходного процесса.

Квадратичная парабола описывается формулой в соответствии с первым уравнением и первым слагаемым правой части равенства системы уравнений (15), т. е.

(17)

Затем из начала координат проводят прямую линию тоже в функции скорости v так, чтобы она пересеклась с параболой в промежутке между предельными скоростями переходного процесса v1 и v2 (см. рис.2). При этом площади, ограниченные между параболой и прямой с обеих сторон от пересечения в промежутке между граничными скоростями, должны быть равны. Эта прямая линия представляет собой линеаризованный закон сопротивления движению воздуха, эквивалентный квадратичному закону. Уравнение этой прямой линии имеет вид:

(18)

где 2а – линеаризованный коэффициент аэродинамического сопротивления [формула (16)], но его численное значение пока не известно.

Значение этого коэффициента определим из условия равенства площадей, заключенных между вертикальными линиями граничных скоростей, между осью абсцисс и параболой (площадь, ограниченная контуром aABba) и между осью абсцисс и прямой линией (площадь, ограниченная контуром aαβba). Площадь, ограниченная параболой (площадь, ограниченная контуром аАВba , рис.2), равна:

(19)

Площадь, ограниченная прямой линией (площадь, ограниченная контуром aαβba , рис.2), равна:

(20)

По условию площади, описываемые формулами (19) и (20), равны. Приравняем их. Разность квадратов величин и разность кубов величин разложим на множители. Затем одинаковые множители слева и справа от равенства сократим. Проделаем эти выкладки.

(21)

Отсюда определим линеаризованный коэффициент аэродинамического сопротивления, эквивалентный аэродинамическому сопротивлению при квадратичном законе движения воздуха, а именно:

(22)

Формулы (16) и (22) являются эквивалентными. Из сравнения этих формул следует среднее интегральное значение скорости, определяющей линейный режим аэродинамического сопротивления, при изменении этой скорости от v1 до v2, то есть


Случайные файлы

Файл
24833.rtf
80919.rtf
166336.rtf
148556.doc
41854.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.