Геоинформационное обеспечение электронных планов горных работ (23122)

Посмотреть архив целиком

Геоинформационное обеспечение электронных планов горных работ

к.т.н. Грищенков Н.Н., (ДонГТУ)

В настоящее время одной из главных задач маркшейдерской службы угольной промышленности Украины является разработка геоинформационных технологий создания электронной горной графической документации. Использование геоинформационных технологий обеспечивает переход на новый уровень решения геолого-маркшейдерских задач и управления процессами добычи угля. Министерство угольной промышленности Украины издало приказ № 621 от 27.12.99, в котором намечен ряд мер, направленных на решение этой задачи, и подготовило отраслевой документ "Концепция развития ГИС и программа поэтапного внедрения ее на предприятиях и в организациях".

В Донецком государственном техническом университете разработки в области создания геоинформационных технологий и электронной горной графической документации ведутся с середины 90-х годов. Накопленный за это время опыт и полученные результаты позволили сформулировать ключевые моменты ГИС-технологии создания электронных планов горных работ.

Электронный план горных работ следует рассматривать как геоинформационную систему цифрового моделирования и графического отображения пластов, горных выработок, а также другой пространственно координированной горно-геологической и горнотехнической информации. В такой трактовке компьютерное графическое отображение горных работ становится одним из компонентов этой системы, но не ее конечным результатом. Другими основными компонентами системы являются базы геолого-маркшейдерских данных, связанные с объектами электронного плана, и программные средства, обеспечивающие решение различных маркшейдерских задач.

Имеющие место попытки отдельных разработчиков свести создание электронных планов только к созданию компьютерных графических копий пластов и горных выработок существенно сужают возможности создаваемых систем и имеют своей главной целью обеспечить эффективную замену офсетному способу размножения горной графической документации. Следование сиюминутным экономическим соображениям приводит к тому, что при этом часто полностью игнорируется создание баз данных для объектов электронного плана, а произвольно выбранная структура его слоев (тематических объектов) не позволяет в будущем создать такие базы данных без достаточно серьезной переделки. В долгосрочной перспективе подобная стратегия только увеличит затраты отрасли на создание полноценных геоинформационных систем и технологий.

Все это указывает на необходимость тщательной проработки структуры информационного обеспечения электронных планов, вне зависимости от функциональной полноты создаваемой системы (будь это полноценная ГИС или только компьютерная графическая копия пластов и горных выработок). На необходимость унификации структуры баз геолого-маркшейдерских данных указывает и вышеупомянутая "Концепция развития ГИС…", предусматривающая введение соответствующих отраслевых информационных стандартов.

Основными технологическими этапами создания электронных планов горных работ являются:

сбор цифровой информации и заполнение баз данных;

создание векторного графического отображения плана горных работ;

установление связи объектов векторного изображения с атрибутивными базами данных.

Этап сбора цифровой информации для наполнения содержимым баз данных является одним из наиболее трудоемких. В зависимости от сложности конфигурации и протяженности сети горных выработок он может потребовать 1-3 чел.-мес. На этом этапе анализируется исходная геолого-маркшейдерская документация (дела скважин, технические паспорта бурения, журналы маркшейдерских съемок и замеров, каталоги координат пунктов подземной маркшейдерской сети и др.), извлекается необходимая цифровая информация, которая заносится в соответствующие базы данных. Попытки опустить либо предельно минимизировать данный этап с целью ускорить получение векторного графического изображения плана горных работ неизбежно приводят к снижению точности графического изображения и отсекают возможность решения ряда геолого-маркшейдерских задач.

Создание векторного графического изображения (векторизация) плана горных работ осуществляется различными способами. Наиболее распространенным способом является дигитализация (цифрование) графических планов горных работ и других графических документов с помощью полуавтоматических дигитайзеров либо непосредственно по растровым изображениям документов, полученным в результате их сканирования. Однако в обоих случаях используемые для дигитализации графические документы уже являются вторичными, т.к. создаются по данным маркшейдерских и геологических съемок. При этом погрешности графических построений автоматически переносятся в дигитализируемые данные и добавляются к погрешностям самой векторизации. Поэтому целесообразно ограничить область применения дигитализации второстепенными выработками и горными объектами, для которых точность определения пространственного расположения не играет доминирующей роли.

Наиболее точным способом векторизации является построение графического изображения плана горных работ непосредственно по цифровой информации из ранее созданных баз данных, т.е. по данным маркшейдерских съемок и замеров. В ряде случаев этот способ требует разработки специальных программных средств для графического отображения цифровых данных, однако именно он обеспечивает максимальную точность пространственного местоположения горных выработок и объектов на электронном плане. Поэтому данный способ целесообразно использовать при построении изображения наиболее важных действующих (актуальных) горных выработок и объектов.

Установление связи объектов векторного изображения с атрибутивными базами данных может быть осуществлено как на этапе построения векторного изображения, так и после него. Это зависит от выбранной графической платформы ГИС (AutoCAD, ArcView, Альбея и др.) и функциональной полноты создаваемой системы.

Платформа геоинформационной системы в значительной степени определяет возможности технологии создания электронных планов, а также концептуальные различия существующих реальных разработок. На кафедре геоинформатики и геодезии Донецкого государственного технического университета разработана и реализована в государственной холдинговой компании "Донуголь технология создания электронных планов горных работ для двух платформ ГИС: AutoCAD 14 / 2000 и ArcView 3.1.

Начальный этап технологии предусматривает создание системы баз геолого-маркшейдерских данных угольной шахты. Содержанием работ этапа является сбор и анализ цифровой информации в маркшейдерском отделе шахты и заполнение баз данных (БД). При этом формируются БД разведочных и эксплуатационных скважин, БД вскрывающих и подготовительных горных выработок, БД очистных горных выработок, БД геологических характеристик угольных пластов и др. Информация для заполнения баз данных берется непосредственно из данных маркшейдерских и геологических съемок и замеров. Вся информация баз данных подготавливается в DBF-формате.

Следующий этап технологии включает построение векторных графических изображений основных подготовительных выработок по координатам маркшейдерских точек и результатам замеров. В зависимости от используемой платформы ГИС реализация этих графических остроений может быть различной. Так, в системе AutoCAD с помощью языка Autolisp для этого были разработаны специальные программные средства. Система ArcView содержит функции для построения точечных объектов по информации из БД, но для их трансформации в линейные объекты потребовалась разработка соответствующих программ (скриптов) средствами встроенного языка Avenue.

Затем выполняется дигитализация второстепенных горных объектов, пространственное положение которых может быть определено с меньшей точностью. Дигитализация производится по сканерным изображениям планов горных работ, выполненным на твердой основе (планы, планшеты, кальки). Для сканирования планов используются планшетные сканеры формата А4. Проведенные исследования этих сканеров показали, что погрешности сканирования (в отличие от сканеров больших форматов) не превышают точности графических построений. К тому же сравнительно невысокая стоимость таких сканеров делает их доступными для горных предприятий.

Опыт показывает, что оптимальными параметрами сканирования являются: разрешающая способность 300 dpi (размер пиксела 0,08 мм); использование режима RGB Color, обеспечивающего 256 цветов (8 бит/пиксел). Размер графического файла одного сканерного кадра в формате BMP (без RLE-сжатия) составляет примерно 8 Мбайт. Для системы AutoCAD можно сократить размер файла сканерного кадра до 3-4 Мбайт, используя более плотные (упакованные) графические форматы (например, GIF или TIF). Однако система ArcView 3.1 работает только с неупакованными форматами. Количество сканерных кадров зависит от размеров и масштаба сканируемого плана. В среднем это составляет 80-120 кадров для масштаба сканируемого плана 1:2000 и 20-30 кадров для масштаба 1:5000.

Единое растровое изображение отсканированного графического плана горных работ может быть получено двумя способами. Первый способ заключается в "сшивке" всех кадров в единое изображение. При этом получаются огромные графические файлы, достигающие нескольких сотен Мбайт. Для их обработки требуются персональные компьютеры специальной конфигурации, приближающиеся по своим возможностям к графическим станциям. Поэтому в настоящее время экономическая целесообразность применения данного способа вызывает сомнения.


Случайные файлы

Файл
90421.rtf
28366.rtf
42358.rtf
49701.rtf
cacao_boby.doc




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.