Метасоматическая модель формирования визейского бокситоносного латеритного профиля КМА (23076)

Посмотреть архив целиком

Метасоматическая модель формирования визейского бокситоносного латеритного профиля КМА

Сиротин В.И.

Рассмотрена метасоматическая природа коры выветривания и предложена метасоматическая модель формирования и преобразования (диагенез, катагенез) бокситоносного латеритного профиля КМА. Теоретически возможные случаи метасоматического замещения находят подтверждение в модели. Суть гипергенного метасоматоза заключается в работе граничной фазы, в которой наблюдается преобразование свободной поверхностной энергии в связанную через конденсацию нового вещества и связанной в свободную путем ликвидации старых межфазных поверхностей и образования новых. Метасоматоз проявляется как на макроскопическом (породном) уровне в образовании зон первичной и вторичной зональности, так и на минеральном уровне, где наиболее ярко проявляются все парадоксы метасоматоза. Предложенная модель позволила значительно конкретизировать и углубить представления о механизме формирования бокситоносных латеритных профилей.

Метасоматоз как один из способов минералообразования имеет сквозной характер, присутствуя во всех стадиях в ряду: выветривание – диагенезкатагенез-метагенез-метаморфизм-магматотипное замещение [8,13]. В последние годы значительно расширились области применения учения о метасоматозе в гипергенных процессах. В учении о корах выветривания на первых порах идеи метасоматоза не нашли широкого распространения, хотя кора выветривания и рассматривалась некоторыми исследователями как метасоматическое образование [5 и др.]. Учение о метасоматозе и учение о коре выветривания развивались параллельно и независимо друг от друга. Вместе с тем, в рамках обеих учений сложились идентичные направления: физико-химическое, кристаллохимическое, фациально-формационное, историко-генетическое и др. Поэтому начавшееся в середине 60-х годов "наведение мостов" было закономерным, хотя и несколько запоздалым актом, способствующим дальнейшему развитию как учения о коре выветривания, так и теории метасоматоза. К настоящему времени метасоматическая природа коры выветривания, в т.ч. латеритной, завоевала признание [2,3,6,9,12,14 и др.].

О сущности процессов метасоматического замещения В условиях метасоматоза теоретически возможны три случая замещения одного минерала другим: объем исходного минерала (V0) может быть равен, меньше или больше суммы объемов новообразованных минералов (ΣVn), связанных с исходным общностью инертных компонентов: 1) V0 = ΣVn; 2) V0 = ΣVn + ΔV V0 = ΣVn - ΔV [8]. Указанным соотношениям соответствуют пять типов возникающих метасоматитов: 1) суперкомпенсированные, 2) автокомпенсированные, 3) аллокомпенсированные, 4) анхикомпенсированные и 5) акомпенсированные [8]. При рассмотрении механизма метасоматического породообразования обычно выделяют следующие минералы: 1) инертные первичные и инертные метасоматические; 2) подвижные первичные и подвижные метасоматические; 3) освобожденные; 4) осажденные; 5) вытесненные. Все типы замещений, как и выделяемые метасоматические минералы, не являются запрещенными в зоне гипергенеза. Например, в коре выветривания КМА представлены инертные первичные и инертные метасоматические минералы: биотит-серицит, серицитгиббсит, каолинит-гиббсит, каолинит-бемит и др. К освобожденным минералам относятся гематит и гетит, которые образуются при окислении пирита, биотита и серицита; кальцит – в начальной стадии разложения плагиоклазов. К осажденным минералам относится трещинная генерация: сидерита, кальцита, пирита, гиббсита и др. К вытесненным минералам относится кварц, органические соединения.

Метасоматоз связан с физико-химической динамикой граничных слоев кристаллических решеток и контактирующих с ними водных растворов. Физхимия граничного слоя определяет сущность, отличительные особенности и парадоксы метасоматоза. Метасоматоз – это превращение одних твердых объемных фаз в другие через физикохимическую динамику граничных фаз [13]. Субмикроскопическую систему метасоматоза можно представить в виде трехзонной модели: первичная объемная фаза – рабочая граничная зона – вторичная объемная твердая фаза. В свою очередь, рабочая граничная фаза разделяется на 3 субмикроскопические зоны: 1) забойную, 2) обменную, 3) конденсационную [13]. Физико-химическая сущность метасоматоза на микроскопическом уровне заключается в координированной работе всех 3-х функциональных зон, что приводит к замещению "объема на объем". Равновесная система может смещаться как в сторону деструктивного замещения с увеличением или с уменьшением объема (метасоматической контракции), так и в сторону интраметасоматоза, иногда с интраметасоматическим разбуханием. Интеграция элементарных актов метасоматоза создает максимальные возможности для псевдоморфизма. Однако интенсивное проявление точечного метасоматоза может привести к образованию "кинетического флюида-проводника" [13], создается обстановка диффузионного перемешивания, что снижает возможности псевдоморфизма до полной его ликвидации. Система переходит в состояние, свойственное предельным диспергитам, коллоидомикросуспензиям, создаются благоприятные условия для перераспределения вещества, развития собственных неунаследованных структур, возникает ряд парадоксальных черт метасоматоза, в частности, сочетание псевдоморфизма с его отсутствием. Суть метасоматоза с точки зрения работы граничной фазы заключается в преобразовании свободной поверхностной энергии в связанную через процессы конденсации нового вещества и связанной в свободную путем ликвидации старых межфазных поверхностей и образования новых. Граничные фазы могут проявляться в различных формах, накладываясь друг на друга, они создают разнообразие структур, которые или унаследуют структурные элементы исходной породы в виде распределения фазовых поверхностей различного качества, или зависят полностью от условий метастабильных граничных фаз с образованием новых структур. Изучение структур и текстур эдуктов и продуктов – это единственный путь, двигаясь которым можно значительно углубить или даже пересмотреть существующие генетические представления и вплотную подойти к расшифровке кинетики метасоматических реакций [2]. Именно поэтому изучение структур и текстур бокситов, их эволюции является отправной точкой всех наших генетических построений [14,15 и др.]. Очевидно, что формирование древних латеритных профилей подчиняется основным закономерностям метасоматоза.

Метасоматоз и древняя латеритная кора выветривания Зональность латеритного профиля КМА.

Сущность зональности состоит в устойчивом и закономерном повторяющемся расположении пород в пространстве, последовательности их развития, что отражается в геологическом разрезе более или менее отчетливыми границами. Возникающая зональность первого порядка имеет надпородный уровень, поскольку зоны коры выветривания можно рассматривать как сообщество пород, связанных единством происхождения, т.е. как фации, определяющие структуру данной формации. Выделяется зональность второго порядка, например, в зоне латерита выделяются подзоны аллитов и бокситов (зональность породного уровня); зональность третьего порядка (уровень минералов) широко проявлена, например, в бокситах и выражается в зональном распределении минералов: бемит-бертьерин-каолинит и др. Можно также говорить о зональности четвертого порядка, которая устанавливается с помощью микрозонда, например, зональное распределение элементов в кристалле. Как это следует из установленных минеральных парагенезисов и эволюции структурно-текстурных особенностей пород от эдукта до конечного продукта, образование зональности – процесс многофазный.

В древних палеозойских профилях отсутствует экстралатеритный (сокращенный) тип. Бокситылатериты развиваются только по породам, прошедшим определенный цикл выветривания. С учетом того, что зоны I и II принадлежат к линейноплощадной, а зоны III и IV – к площадной коре выветривания [15], рассмотрим формирование метасоматической колонки интегрированного профиля выветривания с латеритным покровом.

История формирования профиля и структур бокситов с позиции метасоматоза. Латеритная кора выветривания КМА формировалась многофазно, многостадийно, при этом имеется в виду, что каждая последующая метасоматическая колонка накладывалась на предыдущую.

Долатеритная стадия. Колонка имеет строение 0-I-II, а в зоне "силикатного" карста 0-I-II-III [15]. Более вероятно развитие метасоматической колонки сразу на всю глубину с последующим развитием вышележащей зоны за счет нижележащей. В этом нас, в частности, убеждает существование зоны I-II. Вероятно, ее образование происходило в более специфических условиях постоянного увлажнения непосредственно выше уровня грунтовых вод. Продукты коры выветривания – типичные акомпенсированные метасоматиты, гидрометасоматиты, преобладает вынос вещества. В зоне II, особенно в верхней ее половине, наблюдается метасоматическая контракция по типу когезии, что приводит к увеличению концентрации Al2O3, SiO2 и, вероятно, Fe2O3 и TiO2 в единице объема. Происходит облагораживание и окончательное формирование бокситоматеринского субстрата – "родителей" бокситов [15].

Латеритная стадия. Формируется новая метасоматическая колонка IV-III или IV-II (рис.1), т.е. образуются бокситы-латериты и одновременно усиливается каолинитизация в зоне II, что приводит местами к расширению объемов, занятых зоной III. Механизм формирования метасоматической колонки весьма близок к тому, который описывает В.А.Броневой [3,4]: в начале образуется латерит непосредственно по субстрату, но в дальнейшем, вероятно, при затухании латеритного процесса, каолинит во фронтальной части может "отрываться" от зоны латерита и, таким образом, последняя подстилается каолинитовой зоной собственной метасоматической колонки. Интегрированный профиль выветривания приобретает вид: 1) 0-I-II-IV или 2) 0-III-III-IV (рис.1). В условиях интенсивного выноса SiO2 и щелочей возникает критическая пористость, что в свою очередь создает благоприятные условия для метасоматической контракции и дрейфа алюминия, железа и титана. Имеется определенное различие в механизме концентрации Al2O3 в бемитовом и гиббситовом первичных профилях: в бемитовом профиле субстрат испытывает когезионную контракцию в полном объеме до начала образования бемита, при этом резко возрастает величина "пленочного всасывания" воды капиллярно-пористым (каолинит-серицитовым) агрегатом, что доказано экспериментально [13]. В колонке проявлялась метаколлоидная (возможно, в начале процесса – аморфная) фаза оксида алюминия (бемита). Можно предполагать, что в самом верху была зона сплошной гелефикации с преобладанием бемитовой фазы (обломки гелеморфных бемитовых бокситов встречаются исключительно редко). Возможно, эта предполагаемая зона метаколлоидного бемита самоликвидировалась в результате "потребления" для "внутренних целей", для поддержания автометасоматических процессов в зоне латерита. Остальная часть зоны латерита была обогащена кремнистоалюможелезистым гелем, особенно вдоль зон интенсивного водообмена и транзита, где могли создаваться условия кинетического флюида [13]. В некотором удалении от зон интенсивного водообмена сохраняются условия для псевдоморфизма, здесь обособляются будущие псевдобобовины, сохраняющие реликтовую текстуру каолинит-серицитовых пород. В гиббситовых профилях избирательная кристаллизация гиббсита в пятнах-очках происходит до когезионной контракции, они "держат объем" неуплотненного каолинит-серицитового субстрата, а последующее когезионное уплотнение приводит к образованию микроплойчатой текстуры основной массы [14,15 и др.]. Таким образом, в этих породах пятна-очки изообъемны, их не касается механизм образования микроплойчатости, что позволяет их использовать для определения коэффициента уплотнения при формировании латеритного профиля (по П.В.Зарицкому) [7]. Если весь гиббсит в пределах пятен-очков возникает в результате конечного гидролиза серицита и каолинита, заключенных в их объеме, то должен возникать прирост пористости к уже существующей на 35 % [15], т.е. они должны быть сильно пористыми образованиями. В действительности пятна-очки не имеют высокой пористости. Это дает основание считать, что гиббсит в пятнах образуется не только за счет "местного сырья", но и за счет привнесенного Al2O3, т.е. пятна-очки являются остаточно-автометасоматическими образованиями. Эта часть гиббситового профиля с точки зрения метасоматоза характеризуется противоречивостью, парадоксом метасоматоза: с одной стороны, наблюдается сохранение реликтовой лепидобластовой структуры и реликтовой сланцевой текстуры (и, следовательно, псевдоморфное замещение с тенденцией к сохранению объема), но с другой стороны, отмечаются явная контракция по типу когезии, микродеформации, микроплойчатость, причем последняя возникает независимо от пятен-очков [14,15]. Выше по разрезу увеличивается количество пятен-очков, а объем псевдоцемента (основной массы) уменьшается, причем в нем происходят существенные структурно-текстурные и минеральные изменения: наряду с микроплойчатостью появляется пластическая деформация микроскладок; явление перетекания вещества, что сопровождается постепенным уничтожением реликтовой текстуры сланцев; вполне закономерно при этом уничтожается и рисунок облекания основной массой пятен-очков. Справедливости ради, с целью выяснения последовательности формирования гиббситового профиля, рассмотренный механизм изменения структурно-текстурных особенностей необходимо характеризовать в обратном порядке: сначала (сверху) сплошная гиббситизация, затем избирательная гиббситизация и, наконец, спорадическая гиббситизация (внизу) с образованием "очковой" структуры. И в гиббситовом профиле псевдоцемент в ряде случаев вполне можно рассматривать как результат далеко зашедшего точечного метасоматоза, приводящего к образованию кинетического флюида, "перемешиванию" и ликвидации псевдоморфизма [13].


Случайные файлы

Файл
31674.rtf
27161-1.rtf
20420.rtf
136636.rtf
132404.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.