Бионика – синтез биологии и техники (12986)

Посмотреть архив целиком

Бионика – синтез биологии и техники

В.Д. Ильичев

Датой рождения бионики принято считать 13 сентября 1960 г. – день открытия в США Международного симпозиума «Живые прототипы искусственных систем – ключ к новой технике». Однако в действительности основные концепции бионики сложились задолго до этого, а симпозиум лишь ознаменовал начало широкого международного сотрудничества в этой области.

Доисторический человек, наблюдая за окружающей природой, извлекал из нее некоторые уроки, помогавшие ему создавать полезные устройства. В известном смысле такой подход можно назвать бионикой. В какой-то степени элементы бионики вложены в изобретение колеса, ножа и других инструментов. Арабские врачи задумались об использовании хрусталя или стекла для увеличения изображения подобно тому, как это происходит в хрусталике глаза. Русский ученый Н.Е. Жуковский разработал методику расчета подъемной силы крыла самолета на основе изучения полета птиц.

После того как бионика получила официальное признание как самостоятельная область знаний, ее позиции существенно укрепились, а область исследований расширилась. Потребителями и партнерами бионики становятся самолето- и кораблестроение, космонавтика, машиностроение, радиоэлектроника, навигационное приборостроение, инструментальная метеорология, архитектура и т.д.

Изучая биологические системы, бионика ищет оптимальные решения инженерных проблем. При этом она не только занимается коренным усовершенствованием существующих, но и созданием принципиально новых машин, аппаратов, приборов, строительных конструкций и технологических процессов, построением технических устройств, характеристики которых приближаются к таковым у живых систем.

Конечно, такое определение существенно упрощает ее понятийное содержание. Однако здесь имеется одно существенное ограничение. Оно заключается в том, что далеко не все природные системы опережают уже созданные технические.

В 1963 г. на Всесоюзной конференции по бионике академик А.И. Берг, один из создателей и идеологов бионики, отметил, что в природе существует много лишнего и несовершенного, избыточного и с технической точки зрения неоправданного. Поэтому бионика не слепо копирует природу, она лишь заимствует у нее совершенные конструктивные схемы и механизмы биологических систем, обеспечивающие в сложных условиях существования особую гибкость и живучесть, выработанные живыми системами за время эволюционного развития. Основными направлениями бионики считаются следующие.

Изучение и моделирование нейронов, нейронных сетей нервных центров, принципов организации мозга с целью их использования в технических системах.

Изучение принципов повышения надежности биологических систем, их резервирования и способности к адаптации.

Изучение органов зрения, слуха и обоняния с целью их моделирования.

Изучение систем навигации, локации, ориентации и стабилизации движения у животных в целях создания принципиально новых технических устройств.

Изучение методов кодирования, передачи и обмена информацией в биологических системах на уровне коллектива, отдельного организма, органа, на клеточном и молекулярном уровне с целью создания новых средств связи.

Разработка методов изучения психофизиологических возможностей и способностей человека, оптимальных методов обучения и тренировки, облегчения работы человека-оператора, контроля и прогнозирования его состояния (бионические аспекты проблемы «человек–машина»).

Изучение гидродинамических свойств рыб и китообразных, аэродинамических характеристик насекомых и птиц, рыхлящих и землеройных приспособлений животных с последующим моделированием в авиа и судостроении, робототехнике.

Получение энергии в технических системах по аналогии с биологическими, в том числе непосредственно от биологических систем.

Разработка биологических способов добычи полезных ископаемых, биологических методов в технологиях производства сложных органических веществ.

Изучение природных конструкций и форм в целях их использования в строительной технике и архитектуре.

Здесь перечислены наиболее важные, но далеко не все направления исследований, из которых складывается современная бионика. В настоящее время началось и прогнозируется на последующие годы бурное развитие таких направлений, как математическая бионика, занятая совершенствованием и созданием компьютерных моделей, в том числе информационных; медико-биологическая бионика, использующая достижения природы для разработки методов лечения заболеваний человека, их профилактики; ветеринарно-биологическая, занимающаяся близкими задачами, но применительно к домашним и диким животным.

Рассмотрим некоторые конкретные достижения бионики, уже реализованные в практических целях. Начнем наши очерки с водных и околоводных объектов.



Водолазный колокол Галлея. «Костюм ныряльщика», изобретенный Кингертом



Воздушный колокол паука-серебрянки

Снегоходная машина, имитирующая принцип передвижения пингвинов по рыхлому снегу, была разработана в Горьковском политехническом институте под руководством А.Ф. Николаева. Пингвины передвигаются по снегу, отталкиваясь ластами, подобно лыжникам, использующим для этой цели палки. Основанная на этом принципе снегоходная машина «Пингвин», лежа на снегу широким днищем, способна двигаться со скоростью до 50 км/ч. В подобных машинах нуждаются исследователи Арктики и Антарктиды, а также жители наших северных регионов – охотники, оленеводы и т.д. Здесь тягачи, тракторы и снегоходы при своем движении по снегу образуют глубокую колею, буксуют и увязают. Подобные машины могут использоваться и на мелководных озерах, где обычные плавсредства чаще всего не могут применяться.

Судостроители во всем мире давно уже обратили внимание на грушеобразную форму головы кита, более приспособленную к перемещению в воде, нежели ножеобразные носы современных судов. Японский ученый Тако Инуи учел это при создании модели пассажирского парохода «Куренаи Маару». По сравнению с обычными судами китообразный пароход оказался более экономичным. При уменьшении мощности двигателей на 25% он сохранил прежнюю скорость и грузоподъемность. Американская подводная лодка «Скипджек», корпус которой по форме напоминает тунца, имеет более высокую скорость, повышенную маневренность по сравнению с другими подводными судами.

В последнее время ученые приблизились к разгадке высокоскоростного плавания рыб. Обитатели открытых морских просторов развивают скорость до 42 км/ч, морские млекопитающие, например, киты, до 40 км/ч, а рыба-меч – 130 км/ч.



Наноструктуры на лапках геккона подсказали ученым новый состав клея для плитки



Саранча, приклеенная к металлическому стержню, «смотрит» фильм «Звездные войны». Она подсказала ученым простую искусственную систему, предотвращающую автомобильные столкновения

Традиционно считалось, что рыбы при плавании используют движение хвоста и отчасти плавников. Но вот рыб пустили в аквариум, заполненный молоком, чтобы проследить за движением жидкости при плавании рыбы. При каждом ударе хвоста наблюдалось движение жидкости у жабр, а не у хвоста. При этом основная движущая сила возникала при колебательных движениях туловища; слои жидкости, вдоль которых скользила рыба, превращались в завихрения с вертикальной осью вращения. Рыба как бы плыла, отталкиваясь от водоворотов, которые выталкивали ее вперед.

Остроумный опыт подтвердил эти предположения. В доску вбили два ряда гвоздей и положили рыбу между ними и она «поплыла» посуху, отталкиваясь корпусом и хвостом от гвоздей как от водоворотов. На основе этого принципа кораблестроители начали работать над созданием подводных судов, двигающихся с легкостью рыбы.

Вскоре эти исследования дополнились работами ученых, изучающих плавание дельфинов. Последние способны развивать в воде скорость до 56 км/ч, сопровождая часами и даже днями быстроходные корабли. Расчеты показали, что для достижения такой скорости мышцы дельфинов должны быть в 10 раз мощнее, чем они есть на самом деле. Однако оказалось, что точно воспроизведенная по весу и форме тела модель дельфинов, получающая равную тягу, плывет гораздо медленнее живого дельфина. При этом было замечено, что вокруг живого дельфина возникает струйное течение, не переходящее в вихревое. Обтекание модели дельфина было турбулентным, и, вынужденная преодолевать турбулентность со значительной затратой сил, она перемещалась гораздо медленнее.

Секрет высокой скорости движения дельфина разгадали советские ученые В.Е. Соколов и А.Г. Томилин с сотрудниками.

Оказалось, антитурбулентность дельфина обеспечивается особенностями строения кожи. Его эпидермис очень эластичен и напоминает лучшие сорта автомобильной резины. Он состоит из тонкого наружного и лежащего под ним росткового (шиловидного) слоев. В ячейки росткового слоя входят упругие сосочки дермы, точно зубцы резиновой щетки для замшевой обуви. Эпидермис и сосочки дермы особенно развиты в лобной части головы и на передних краях плавников, где давление воды максимальное. Ниже сосочков дермы располагаются коллагеновые и эластиновые волокна, а между ними – жир. Все вместе действует подобно демпферу, предотвращающему турбулентность и срыв потока.

Под давлением подкожный жир меняет форму клеток, а затем восстанавливает ее. Буферность кожи достигается еще и упругостью коллагеновых и эластиновых волокон.


Случайные файлы

Файл
teacher.doc
141837.rtf
144552.rtf
117363.rtf
19791.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.