Cульфоксидный комплекс гидрохинона как фотоинициатор полимеризации метилметакрилата (12162)

Посмотреть архив целиком

Cульфоксидный комплекс гидрохинона как фотоинициатор полимеризации метилметакрилата

Муринов Ю.И., Батталов Э.М., Прочухан Ю.А., Афзалетдинова Н.Г.

Рассматривается поведение сульфоксидного комплекса гидрохинона в радикальной полимеризации метилметакрилата. Показано, что в отличии от гидрохинона такой комплекс участвует в фотоинициировании полимеризации. Приведен предполагаемый механизм инициирования полимеризации.

Известно [1, 2], что гидрохинон (ГХ) является ингибитором полимеризации метилметакрилата (ММА) и применяется при получении мономера в промышленности. Ингибирующая активность объясняется окислением гидрохинона в хинон кислородом среды.

Представляло интерес поведение сульфоксидного комплекса гидрохинона в радикальной полимеризации, ибо аналогичные комплексы (металлов, кислот и др.), как было показано ранее [3], могут быть использованы как полезные компоненты полиметилметакрилата.

Экспериментальная часть

ММА очищали по методике [3]. Динитрил азодиизомасляной кислоты (ДАК) имел Тпл=1030 С, с разложением. Комплекс гидрохинона (ГХ) с дигексилсульфоксидом (ДГСО) синтезирован в лаборатории координационной химии ИОХ УНЦ РАН. Кинетику полимеризации изучали дилатометрическим способом [5]. Источником УФ-облучения служила ртутная лампа среднего давления ПРК-400. Расстояние источника света до полимеризуемых образцов во всех опытах составляло 14 см.

Результаты и их обсуждение

Гидрохинон (п-HO-C6H4OH) как ингибитор полимеризации ММА действует только в присутствии кислорода, и его ингибирующая активность обусловлена окислением его в хинон кислородом полимеризационной среды [1].

Значительно в меньшей степени ингибирующее действие гидрохинона в комплексе с (ДГСО) дигексилсульфоксидом [ГХ 2ДГСО] проявляется при вещественном инициировании полимеризации ММА, а ДГСО, как было показано в [6], лишь в начальной стадии полимеризации ММА замедляет скорость реакции. Слабое ингибирующее влияние ГХ 2ДГСО, вероятно, объясняется достаточно сильным связыванием гидрохинона в комплекс и существенным уменьшением его концентрации в полимеризационной системе.



Рис. 1. Кинетика полимеризации ММА в присутствии комплекса гидрохинона (500 С): 1 - ММА+ГХ 2ДГСО (1 % м.)+ДАК (0,05 % м.) УФ-облучение; 2 - ММА+ГХ 2ДГСО (1 % м.) УФ-облучение; 3 - ММА+ГХ 2ДГСО (1 % м.)+ДАК (0,05 % м.); 4 - ММА+ГХ (1 % м.) УФ-облучение; 5 - ММА+ГХ (0,05 % м.)

Действительно, ГХ является ингибитором полимеризации ММА как при вещественном инициировании, так и при фотополимеризации (рис. 1). Добавление в систему инициатора (ДАК) приводит к возрастанию скорости полимеризации.

Совершенно иная картина наблюдается при проведении полимеризации ММА под УФ-облучением (рис. 1) в присутствии ГХ 2ДГСО. Видно, что скорость фотополимеризации ММА в присутствии комплекса гидрохинона сравнима со скоростью полимеризации, инициированной ДАК. Скорость фотополимеризации ММА при совместном инициировании с ГХ 2ДГСО и ДАК существенно выше, чем скорость фотополимеризации отдельно с ГХ 2ДГСО или с ДАК. Вероятно, это можно объяснить синергетическим действием инициаторов.

(1)

Механизм фотоинициирования, видимо, заключается в переходе комплекса ГХ 2ДГСО под воздействием УФ-облучения в триплетное состояние и в последующей передаче этой энергии в мономер (инициирование полимеризации) по выше приведенной схеме (1).

Возможности инициирования полимеризации ММА образующимися при фотолизе феноксильными радикалами по схеме (2)

(2)

не исключена, хотя малопредпочтительна.

Таким образом, комплекс гидрохинона с дигексилсульфоксидом является достаточно эффективным фотоинициатором полимеризации ММА. Скорость фотополимеризации ММА в присутствии ГХ·2ДГСО сопоставима со скоростью полимеризации ММА, фотоинициированной ДАК.

Увеличение скоростей полимеризации ММА, фотоинициированной сульфоксидными комплексами, учитывая [7] и приведенные значения для комплекса гидрохинона, можно расположить в следующий ряд:

UO2Cl2 2ДГСО > UO2(NO3)2 2ДАСО > BiCl3 3ДГСО > VCl3 3НСО > ГХ 2ДГСО > NiCl2 2ДАСО > НCl 2ДГСО > HFeCl44ДГСО·3Н2О,

где ДАСО - диамилсульфоксид, НСО - нефтяные сульфоксиды.

Список литературы

Georgieff K.K. // J. Appl. Polymer Sci. 9. 2009. 1965.

Акриловые полимеры. М.: Химия, 1966. С. 37.

Мономеры. М.: Иностранная литература, 1951-1953. Т. 1, 2.

А.с.668289 (СССР). Способ получения антистатического органического стекла /Никитин Ю.Е., Леплянин Г.В., Батталов Э.М. и др. 1979.

Коршак В.В. Методы высокомолекулярной органической химии. М.: АН СССР, 1953. Т. 1. С. 667.

Рафиков С.Р., Батталов Э.М., Леплянин Г.В. и др. // Докл. АН СССР. 1977. Т. 235. № 6. С. 1301.

Леплянин Г.В., Батталов Э.М., Муринов Ю.И. и др. // Высокомолекулярные соединения. 1988. Т. ХХХ. № 3. С. 223.

Для подготовки данной работы были использованы материалы с сайта http://www.bashedu.ru



Случайные файлы

Файл
64233.rtf
81277.rtf
16348.rtf
154240.rtf
59865.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.