Прогнозирование и снижение риска транспортных происшествий (4253)

Посмотреть архив целиком

Прогнозирование и снижение риска транспортных происшествий

П.Г.Белов

Предлагается технология количественной оценки меры возможности возникновения транспортных происшествий (ТП), основанная на имитационном моделировании тех перевозочных процессов, проведение которых может быть уподоблено функционированию конкретных систем «человек-машина-среда» (ЧМС). При этом под их первым компонентом подразумеваются члены экипажа конкретного транспортного средства, вторым – само транспортное средство (как сложная техническая система), а под третьим – маршрут её перемещения.

Рассматриваемый способ и реализующий его компьютерный программный комплекс позволяют автоматизировать не только прогноз данного параметра риска соответствующих ТП, но и оптимизацию организационно-технических мероприятий, предлагаемых для его снижения. Наиболее предпочтительным пользователем предлагаемой автоматизированной технологии является администрация транспортного предприятия, взаимодействующая с разработчиком и изготовителем транспортных средств, а сферой применения – осуществляемый ею менеджмент техногенного риска.

Рассматриваемая технология развивает ранее опубликованные идеи автора этой статьи. В данном случае используется наиболее сложная модель, учитывающая влия ние большого числа тех трудно формализуемых (нечетко определенных) факторов перевозочных процессов, которые наиболее существенно влияют на возможность возникновения в них ТП.

Особое внимание уделено так называемому «человеческому фактору», т.е. ошибочному выполнению экипажем таких тактов операторской деятельности, как:

восприятие и дешифровка информации о параметрах перевозочного процесса; структурирование и сопоставление полученных данных с требованиями его безопасности;

оценка необходимости и вариантов реагирования на обнаруженные при этом отклонения; выработка альтернативных воздействий и ранжирование их по эффективности;

принятие и реализация решения на корректировку осуществляемого процесса.

Выбор имитационного (логико-лингвистического) моделирования ТП при функционировании современных транспортных средств обусловлен такими достоинствами указанного метода, как возможность учета практически всех наиболее существенных факторов транспортного риска, высокие гибкость и оперативность оценки эффекта реакции ЧМС на предполагаемое изменение отдельных свойств её компонентов или их совокупностей.

Процедура логико-лингвистического моделирования с целью прогнозирования риска возникновения ТП при функционировании ЧМС и оценки вклада в него учитываемых факторов может включать следующие основные этапы: а) описание процесса возникновения причинной цепи предпосылок (ПЦП) к техногенным происшествиям на вербально-качественном уровне, с применением логических условий и лингвистических переменных, б) последующую формализацию полученной при этом модели, т.е. её представление в виде соответствующей диаграммы причинно-следственных связей типа «сеть стохастической структуры», в) разработку имитационного алгоритма исследования процесса возникновения ТП и соответствующей ему компьютерной программы, г) проведение с их помощью серии машинных экспериментов.

Как представляется, учитываемыми при этом факторами следует считать психофизиологические свойства экипажа транспортного средства и сложность возложенных на него алгоритмов, а также и всё то, что в основном определяет эргономичность и надежность используемой им техники, комфортность рабочей среды и качество технологии перевозки пассажиров или грузов. Именно такой (системный) подход применен автором при разработке стохастической сети GERT и основанного на ней имитационного алгоритма, пригодного для машинного моделирования в рассматриваемых здесь ЧМС процесса возникновения предпосылок и перерастания их в ПЦП техногенного происшествия. Первооснова такой сети представлена на рис. 1.

В верхней части изображенной выше полувербальной модели находятся три типа различных ТП (события 79: а, б, в), отличающиеся тяжестью возможных последствий, а ниже – предшествующие им особые ситуации и предпосылки к ним. Реализация каждого из этих событий, обозначенных ромбиками или прямоугольниками с текстом, имеет случайный характер и может быть осуществлена альтернативными способами. Основание и другие элементы этой модели образованы свойствами конкретной ЧМС и возможными событиями в ней, которые объединены связями и узлами, означающими логико-вероятностные условия: стохастическое разветвление (символы каплеобразной формы), сложение и перемножение (круги со знаками “+” и “•").

Особо отметим, что в основу подобной интерпретации процесса появления ТП положен учет влияния свойств конкретной ЧМС на качество выполнения экипажем транспортного средства основных этапов операторской деятельности: а) восприятие и дешифровка информации о перевозочном процессе; б) структурирование полученных данных в соответствии с задачами, решаемыми на конкретном этапе управления движением; в) выявление отклонений параметров процесса от требований безопасности и технологии перевозки; г) оценка необходимости и способов вмешательства экипажа в данный процесс; д) сравнительная оценка альтернативных решений и выбор из них конкурентоспособных; е) прогнозирование степени их приемлемости и эффективности, е) реализация решения на корректировку процесса при необходимости. Перечисленные элементы алгоритма деятельности экипажа транспортного средства и процесса возникновения при этом ПЦП к возможным происшествиям показаны на рис. 1 в прямоугольниках с двойной рамкой.

Рассмотрим взаимодействие элементов предложенной модели в процессе возникновения ПЦП при функционировании какой-либо ЧМС рассматриваемого здесь типа. Например, – интерпретируя условия появления дорожно-транспортной аварии при перевозке автомобилем аварийно химически опасного вещества (АХОВ). При этом в качестве «машины» будет подразумеваться автомобиль, «человека» – управляющий им водитель, а «среды» – видимый ему из кабины участок дороги или улицы со средствами разметки и регулирования движения, а также с другими неподвижными и движущимися объектами.

Последовательно поясним назначение элементов модели, начиная с её нижней левой части, где показано взаимодействие компонентов данной ЧМС, результаты которого (совместно с возможными отказами автомобиля и неблагоприятными воздействиями на него со стороны дороги) проявляются в реальной информации о происходящем. Там же показан прямоугольник, указывающий на вероятные неисправности тех средств индикации параметров движения (органов управления автомобилем и дорожными условиями), которыми пользуется водитель. Данный элемент сети может свидетельствовать, например, о возникновении несоответствия между информационной моделью водителя и действительным положением дел. А вот в противоположной части этой модели отмечен тот факт, что водитель, как и любой другой человек-оператор, руководствуясь знанием технологии работ и имеющимся у него опытом, обычно создает когнитивную модель выполняемой операции, позволяющую ему после выполнения одних действий ожидать определенную информацию и изготовиться к последующим. При этом действительная информация о выполняемой операции может отличаться от информации, ожидаемой человеком, что будет им восприниматься или не восприниматься в последующем.

Например, при приближении к перекрестку или необходимости совершения иного маневра, водитель должен сбавить обороты двигателя, нажать на педаль привода сцепления или тормоза, а затем повернуть рулевое колесо. При этом он ожидает снижение шума в одном месте (от двигателя) и его появление в другом (в районе колес), а также готовится к восприятию инерционной нагрузки, обусловленной изменением вектора скорости автомобиля. Однако этого может не произойти из-за появления возможных ошибок водителя (допустим, не воспринял изменения уровня шума и бокового ускорения), отказов задействованных при маневре элементов автомобиля (акселератора либо тормозного и рулевого устройств), нерасчетных воздействий дорожного покрытия (его низкого трения из-за оледенения или наличия масляной пленки, например).

Иначе говоря, в результате восприятия и дешифровки информации о состоянии рассматриваемого здесь перевозочного процесса и сравнения ее с ожидаемой, возможны следующие альтернативные исходы: а) действительная ин- формация идентична ожидаемой и правильно воспринята водителем (см. рис. 1 – состояние ИИП); б) действительная информация не идентична ожидаемой, но правильно им понята – состояние модели НИП; в) оба вида информации в действительности идентичны, однако реальная информация искажена водителем (состояние ИИИ); г) обе информации на самом деле оказались не идентичными, а реальная информация еще была им дополнительно искажена при дешифровке или восприятии – состояние НИИ.

Указанные четыре случая представляют собой пол- ную группу возможных исходов приема и дешифровки информации, а располагаются они над соответствующим стохастическим узлом-разветвлением сети. При этом три последних события можно истолковывать как появление возмущений, приводящих к утрате соответствующей ЧМС равновесия; тогда как первый исход можно считать благополучным (в смысле отсутствия условий для зарождения ПЦП к ТП), т.е. в данном случае имеет место удержание динамического равновесия (событие 26 – гомеостазис). Сохранение подобного равновесия свидетельствует как об успешном завершении выполняемого этапа перевозочного процесса, так и о возможности перехода к следующему, на что указывает пунктирная линия (логическая связь), выходящая из этого события и направленная вниз.


Случайные файлы

Файл
14038.rtf
74412-1.rtf
8322.rtf
ref.doc
106904.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.