Анализ влияния химического состава и технологии получения на жаропрочность металлов и сплавов (122829)

Посмотреть архив целиком

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ОТКРЫТЫЙ УНИВЕРСИТЕТ

Чебоксарский институт (филиал)






Доклад

на тему:

АНАЛИЗ ВЛИЯНИЯ ХИМИЧЕСКОГО СОСТАВА И ТЕХНОЛОГИИ ПОЛУЧЕНИЯ НА ЖАРОПРОЧНОСТЬ МЕТАЛЛОВ И СПЛАВОВ




Выполнили: студенты 2 курса Иванов С.В., Львов А.

Факультет: автомеханический, Группа А21\05

Научный руководитель:











Чебоксары 2006


ПЛАН


ВВЕДЕНИЕ 3

СПОСОБ И РЕЖИМ ВЫПЛАВКИ 4

СТАЛИ И СПЛАВЫ ДЛЯ ВЫСОКОТЕМПЕРАТУРНОЙ СЛУЖБЫ 6

ЖАРОПРОЧНЫЕ ЦВЕТНЫЕ СПЛАВЫ, ИХ СВОЙСТВА И НАЗНАЧЕНИЕ 22

МАГНИЕВЫЕ СПЛАВЫ 22

АЛЮМИНИЕВЫЕ СПЛАВЫ 23

ТИТАНОВЫЕ СПЛАВЫ 24

МЕДНЫЕ СПЛАВЫ 25

НИКЕЛЕВЫЕ И КОБАЛЬТОВЫЕ СПЛАВЫ 26

ЖАРОПРОЧНЫЕ СПЛАВЫ ТУГОПЛАВКИХ МЕТАЛЛОВ. ИХ СТРУКТУРА, СВОЙСТВА И ПРИМЕНЕНИЕ 27

ВАНАДИЕВЫЙ СПЛАВЫ 30

ХРОМОВЫЕ СПЛАВЫ 30

НИОБИЕВЫЕ СПЛАВЫ 31

МОЛИБДЕНОВЫЕ СПЛАВЫ 31

ТАНТАЛОВЫЕ СПЛАВЫ 32

ВОЛЬФРАМОВЫЕ СПЛАВЫ 33

Используемая литература 36



ВВЕДЕНИЕ


В последние годы в связи с развитием новых специальных областей техники широкое применение получили жаропрочные сплавы, способные без разрушения в течении длительного времени сопротивляться незначительным пластическим деформациям при высоких температурах.

Многообразие современных жаропрочных сплавов связано с различными уровнями рабочих температур и требованиями, предъявляемыми к свойствам сплавов при этих температурах (предела длительной прочности и ползучести, электро - и теплопроводность, свариваемость и др.)

Рабочие температуры современных жаропрочных сплавов составляют примерно 0,5-0,8 Тпл, а в ряде случаев 0,8-0,9 Тпл, время применения изменяется от нескольких часов до нескольких лет, напряжения - от нескольких до десятков Мн/м2.

Многочисленные требования к современным жаропрочным сплавам могут быть удовлетворены лишь тогда, когда изыскание и разработка новых жаропрочных сплавов идут с заметным опережением этих требований.



СПОСОБ И РЕЖИМ ВЫПЛАВКИ


Выплавка жаропрочных сплавов с использованием чистых шихтовых материалов, вакуумного переплава позволяет получать более высокие и стабильные механические свойства.

Электрошлаковый и вакуумный дуговой переплав способствует повышению выносливости, термостойкости и уменьшает дисперсию свойств.

В работе отмечается, что сплав G-34 вакуумной плавки по сравнению с обычной уменьшил дисперсию с 33,2 до 18,2%, т.е. в 2 раза, причем предел ограниченной выносливости образцов вакуумной плавки при 750°С возрос на 20%.

Так же недостаточное раскисление, завышение температуры разливки, загрязнение металла неметаллическими включениями, металлургические дефекты отрицательно сказываются на пределе выносливости и способствуют росту дисперсии. Исследование структуры слитков обычной и вакуумной плавок стали 1Х12Н2ВМФ (ЭИ961) показывает, что металл вакуумных плавок имеет более плотную, однородную макроструктуру без рыхлостей и расслоений по сравнению с металлом открытых плавок.

Вакуумный дуговой переплав снижает загрязненности этой стали оксидными я силикатными включениями 3-4 раза.

Таблица 1

Влияние способа выплавки на кратковременную и длительную прочность жаропрочных деформируемых сплавов.


Метод

выплавки



Марка

сплава


Длительная прочность

Кратковременный разрыв


t,°C



σ

кгс/ мм²



t, ч



t,°C



σв

Кгс/ мм²


σ

ψ

%

Открытая плавка в дуговой печи


ХН77ТЮР.

(ЭИ437Б)


700


44


153


700


86


20


25


Продолжение таблицы.

Вакуумный дуговой переплав



700


44


157


700


85


20


24

Открытая плавка в дуговой печи


ХН70ВМТЮ

(ЭИ617)


850


20


82


800


76


4,4


10.5

Вакуумный дуговой переплав


850


20


114


800


80


10


15


При переходе от обычной воздушной плавки к вакуумной происходит увеличение предела прочности до 10%, а увеличение длительной прочности (по времени) в 2 раза; удлинение при этом возрастает в 2-3 раза. Кроме того, заметно снижается содержание газов в металле.

Таблица 2

Механические свойства сплава М-252 в зависимости от способа выплавки

Плавка

Тисп,°С

,

кгс/ мм²


,

кгс/ мм²


,

кгс/ мм²


δ,%

На воздухе

650

750

815

95

76

59,7

-

-

31

46,4

21*

11,2

-

5**

-

В

вакууме

650

750

815

110

97

66.8

-

-

33.8

52

26.7*

14.8

-

-

9,5**


* Температура испытания 760° С. ** Температура испытания 730° С.

Характеризуя влияние способа выплавки на кратковременную и длительную прочность жаропрочных деформированных сплавов, отмечается, что вакуумный переплав улучшил жаропрочные свойства сплава ХН70ВМТЮ (ЭИ617) (табл.1).

В таблице 2 даны сравнительные свойства сплава М-252 для лопаток турбин, полученные дуговой и вакуумной плавкой, показывающие преимущества металла вакуумной плавки по всем характеристикам.

Данные 1000-ч прочности по сплавам М-252, Уаспаллой, К-235, GMR-235 также свидетельствуют о преимуществе вакуумной выплавки. Следует подчеркнуть, что механические свойства получаются более высокими при увеличении глубины вакуума.

Сопротивление ползучести при переходе от обычной воздушной выплавки к вакуумной возрастает (по времени) для нимоник 90 на 80%, а для нимоник 105-на 50% при возрастаний удлинения в 4,5 и 2,2 раза соответственно. Термостойкость также возрастает для литейных и деформируемых сплавов при переходе от открытой к вакуумной выплавке, о чем свидетельствуют данные многих исследователей.


СТАЛИ И СПЛАВЫ ДЛЯ ВЫСОКОТЕМПЕРАТУРНОЙ СЛУЖБЫ


Развитие работ в области создания и технологии производства жаропрочных и жаростойких сталей и сплавов во многом определяет прогресс различных отраслей промышленности: авиация, ракетпокосмическая техника, судостроение, тепловая и атомная энергетика, химическое и нефтехимическое машиностроение, приборостроение и др.

В связи с различными условиями эксплуатации рассматриваемых сталей и сплавов (температура, напряжение, среда) анализ состояния вопроса целесообразно провести по группам материалов.

Теплоустойчивые стали.

Теплоустойчивые стали, работающие при высоких температурах до 650°С и давлениях до 250-300 атм, обладая повышенной кратковременной и длительной прочностью, могут работать и в агрессивных средах длительностью от 10 до 100 тыс. часов.

Теплоустойчивые стали, как правило, являются низколегированными: содержание легирующих элементов в них не превышает 4 мас.%, за исключением 12 мас. % хромистых коррозионностойких сталей.

При правильном выборе химического содержания стали и режима термической обработки сталь упрочняется по трем механизмам: 1) фазовый наклеп при y-d-превращении; 2) дисперсионное твердение; 3) упрочнение твердого раствора. В результате формируется оптимальная структура, которая обеспечивает высокие свойства в исходном состоянии и их стабильность в течение длительного времени эксплуатации при высоких температурах.


Случайные файлы

Файл
28164.rtf
132094.rtf
61011.rtf
dz1.docx
11559.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.