Технологія складання нестандартних задач з математики (115262)

Посмотреть архив целиком

Математичний розвиток молодших школярів водночас є метою і результатом початкової математичної освіти, який уявляється складним мисленнєвим процесом, структурно-цілісним, інтегративним за суттю та дискретним і диференційованим за формою. Інтелектуальна здатність молодшого школяра до виконання математичних дій у їх системному взаємозв'язку визначається достатнім рівнем сформованості пізнавальних процесів, мотиваційної сфери, досвіду навчально-творчої діяльності. У навчальному процесі формування гнучкості, рухливості розумових операцій в учнів початкової школи здійснюється поступово за допомогою навчальних завдань різної складності: від традиційних до нестандартних.

Складання нестандартної задачі потрібно розпочинати із вибору параметрів, який має узгоджуватися із темою уроку, вивченим учнями математичним матеріалом на попередніх уроках, підготовленістю молодших школярів до виконання завдань підвищеної складності.

Нестандартні задачі охоплюють клас завдань математичного змісту, які не мають визначеного способу розв'язування і передбачають виконання попереднього аналізу числових даних умови, моделювання за сюжетною лінією, встановлення логіки зв'язків між даними та шуканими величинами, які не подаються безпосередньо. До таких задач відносимо ті, які у підручниках з математики для початкової школи (автор М.В. Богданович) позначені "зірочкою". На уроках ці задачі розглядаються вибірково, однак досить часто пропонуються учням для самостійного опрацювання. Задачі із "зірочкою" не мають однозначного методичного обґрунтування чи пояснення щодо узагальненого способу знаходження відповіді та передбачають достатньо розвинений логічний апарат учнів для їх розв'язування.

Для вчителя сучасної початкової школи однією із умов його професійної компетентності є високий рівень володіння методикою розв'язування нестандартних задач в умовах класу, уміннями інтерпретувати спосіб розв'язування, а також технологією їх складання. Основні дидактичні цілі використання нестандартних задач з математики полягають у:

створенні дидактичних ситуацій, спрямованих на збагачення математичного матеріалу завданнями нових типів, а саме, розвивального спрямування;

стимулюванні концептуального, емоційного та мотиваційного складників особистості молодшого школяра під час розв'язування нестандартних задач;

розвитку пошукових структур мисленнєвої діяльності на математичному матеріалі завдяки підсиленню, активізації логічної складової.

Складність нестандартної задачі залежить від багатьох чинників, з-поміж яких назвемо суб'єктивний (вік дітей, рівень розвитку їхньої пізнавальної діяльності, наявність математичних здібностей, досвіду творчої діяльності) та об'єктивний (стандарти математичної освіти, зміст програми, наявність навчально-методичної літератури).

Умовна класифікація нестандартних задач, основою якої обрано зміст навчання математики у початкових класах:

1. Задачі з варіативними сенсорними ознаками (формою, кольором, величиною).

2. Задачі на обчислення (логіка нумерації, різницеві парадокси, на залежність між компонентами та результатами дій, абстрактного змісту, на поєднання виконання арифметичних дій).

3. Задачі із відношеннями між величинами (порівняння довжин відрізків, віку; на зміну площ, об'ємів, маси, віку; визначення дня тижня).

4. Задачі геометричного змісту (на просторову орієнтацію, метричні і позиційні задачі).

5. Задачі на рух.

Технологія складання нестандартних задач полягає у:

а) визначенні параметрів задачі, які покладаються в основу її сюжетної лінії. Наприклад, відстань між двома населеними пунктами; числа; зріст дітей; довжина відрізків; вік хлопчика і дівчинки тощо. Диференціація параметрів для нестандартної задачі пов'язана також із тими функціями, які вони виконують під час складання і розв'язування задач, а саме із забезпеченням предметної та логічної складових задачі;

б) виборі зв'язків між обраними параметрами, що визначається конкретною темою, дидактичним навантаженням завдань;

в) складанні тексту задачі, структурно цілісного з чітко сформульованою сюжетною лінією.

Основними параметрами у технологічному підході до складання нестандартних задач визначено такі:

а) об'єкти дії як операторна основа у складанні сюжетної лінії задачі та кількість об'єктів;

б) відношення (кількісні, просторові, часові, за величиною, подільності, логічного слідування, порядку, а саме: більше - менше; вище — нижче; старше - молодше; важче - легше; далі - ближче; довше — коротше; швидше — повільніше; справа — зліва; вгорі — внизу); порівняльна характеристика предметів (довший - коротший, більший - менший, старший - молодший тощо);

в) логічні операції (заперечення, кон'юнкція, диз'юнкція, імплікація, еквіваленція), закони логіки (тотожності, виключеного третього, достатньої підстави, подвійного заперечення, силогізму та інші), форми логічного мислення (поняття, судження, висновок), прийоми логічного мислення (аналіз, синтез, порівняння, аналогія, абстрагування, узагальнення, конкретизація).

Складання нестандартної задачі потрібно розпочинати із вибору параметрів, який має узгоджуватися із темою уроку, вивченим учнями математичним матеріалом на попередніх уроках, підготовленістю молодших школярів до виконання завдань підвищеної складності.

Продемонструю на конкретних прикладах технологію складання задач з однією логічною операцією.

Приклад 1. Складання задачі з сенсорними ознаками до теми "Доцифровий період".

Параметри: Об'єкти дії — ялинка, дуб. –

Кількість об'єктів — 2. –

Відношення — "вище".

Логічна операція — заперечення.

Задача. Біля будинку росли ялинка та дуб. Ялинка була не вища, ніж дуб. Яке із дерев вище?

Приклад 2. Складання задачі із часовими відношеннями до теми "Табличне додавання і віднімання з переходом через десяток".

Параметри: Об'єкти дії — брат, сестра. –

Кількість об'єктів — 2. –

Відношення — "молодше". –

Логічна операція — імплікація.

Задача. Якщо брату 4 роки і він молодший від своєї сестри на 4 роки, то скільки років буде сестрі через 4 роки?

Задача. Якщо брату два роки тому було 9 років і він на шість років молодший від сестри, то скільки років сестрі зараз?

Задача. Якщо сестра молодша за брата на п 'ять років і через три роки її вік складатиме 12років, то якого віку брат?

Задача. Якщо чотири року тому вік сестри складав 8 років і вона молодша від брата на чотири роки, то скільки років братові зараз?

Приклад 3. Складання позиційних задач геометричного змісту до теми "Прямокутник".

Параметри: Об'єкти дії - круг, прямокутник, трикутник. –

Кількість об'єктів - 3. –

Відношення - "справа — зліва". –

Логічна операція - імплікація.

Задача. Якщо трикутник перший справа, а прямокутник перший зліва, то як будуть розташовані фігури зліва направо?

Задача. Якщо круг перший справа, а трикутник — не другий зліва, то як будуть розташовані фігури справа наліво?

Приклад 4. Складання задачі на логіку нумерації до теми "Нумерація чисел у межах 100".

Параметри: Об'єкт дії — двоцифрове число. –

Кількість об'єктів — 1. –

Відношення — "більше — менше". –

Логічна операція - кон'юнкція.

Задача. Записати число третього десятка, яке закінчується парною цифрою і ділиться на 7.

Задача. Записати двоцифрове число парними цифрами і щоб кількість десятків була на 6 більша, ніж кількість одиниць.

Задача. Записати двоцифрове непарне число, яке більше 39 і менше 43.

Задача. Назвати найбільше і парне двоцифрове число.

Приклад 5. Складання задачі на поєднання дій до теми "Багатоцифрові числа".

Параметри: Об'єкт дії - багатоцифрові числа. –

Кількість об'єктів — 2. –

Відношення - "подільності". –

Логічна операція - кон'юнкція.

Задача. Частки першого невідомого числа та числа 38 і другого невідомого та числа 27однакові. Це число 9558. Знайти перше і друге невідомі числа.

Задача. Різниця двох чисел дорівнює 108695 і вона (різниця) у 5разів менша за більше із чисел. Знайти невідомі числа.

Задача. Сума двох чисел дорівнює 188232 і одне із чисел більше за друге у 32рази. Знайти невідомі числа.

Задача. Сума двох чисел дорівнює 188232 і вона (сума) більша за одне із чисел у 33рази. Знайти невідомі числа.

З а д а ч а. Різниця двох чисел дорівнює 32081 і їх сума 93417. Знайти невідомі числа.

Задача. Перше число більше за друге у 17разів, але менше за третє у 3 рази. Різниця між першим і третім числом складає 175812. Назвати всі числа.

Наведені вище приклади ілюструють складання найпростіших задач з однією логічною операцією, тоді як нестандартні задачі містять не тільки логічні операції, а й форми та прийоми мислення у певному поєднанні з прямим чи оберненим ходом розмірковувань.

Проаналізуємо одну із нестандартних задач на предмет параметрів у аспекті технологічного підходу. Для цього оберемо задачу № 961 із підручника математики для 3 класу (автор М.В.Богданович).

Задача. Ліхтарик з батарейкою коштує 4 грн. Хлопчик на всі гроші, які були в нього, міг купити ліхтарик або 4 батарейки. Скільки грошей було у хлопчика?

Аналіз задачі. З умови задачі (Хлопчик на всі гроші, які були в нього, міг купити ліхтарик або 4 батарейки) можна зробити висновок, що ліхтарик та 4 батарейки коштують однаково. За прийомом аналогії формулюється судження про вартість ліхтарика з батарейкою. (Вартість ліхтарика з батарейкою дорівнює вартості 5 батарейок, а саме 4 грн), звідси ціна батарейки обчислюється діленням: 400 : 5 = 80 (к.). Наступне судження: Якщо ціна батарейки 80 к., а хлопчик міг купити 4 батарейки, то у нього було: 80 • 4 = 320 (к.). Відповідь: 3 грн20к.


Случайные файлы

Файл
90620.rtf
92074.rtf
65984.rtf
41346.rtf
KASIAN4.DOC




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.