Теория движения космических обьектов (28588-1)

Посмотреть архив целиком

Главным звеном в цепи космических дисциплин является теория движения космических обьектов .В этом докладе рассматривается одна из её составных частей - теория свободного полёта в полях тяготения .

Важнейшей из природных сил ,действующих на космический аппарат ,является сила всемирного тяготения .Силы тяготения (или силы притяжения ) подчиняются ньютоновскому закону всемирного тяготения .Этот закон говорит: всякие две материальные точки притягиваются друг к другу с силами ,прямо пропорциональными квадрату расстояния между ними ,или ,в математической форме :

f*m1*m2 (1)

F=r^2

Здесь F -величина обеих сил притяжения , m1,m2 - массы притягивающихся материальных точек, r- расстояние между ними ,f- коэфициент пропорциональности,называемой постоянной тяготения (гравитационная постоянная) .Если измерять массу в килограммах, силу ньютонах ,а расстояние в метрах ,то ,как показывают точные измерения ,постоянная тяготения равна 6,672*10^(-11) м^3/(кг*с^2)

На различных этапах космического полёта различное значение может иметь воздействие среды, в которой происходит движение . Силы ,действующие со стороны атмосферы на космический аппарат ,называются аэродинамическими .В межпланетном пространстве важную роль может играть давление солнечного излучения ,которое совершенно незаметно в повседневной жизни.Если масса космического аппарата невелика ,а поверхность ,на которую давят солнечные лучи,значительна,то действием этого фактора можно пренебречь .

Задача N тел и метод численного интегрирования

Пассивное движение космического аппарата в мировом пр-ве проиходит в основном под действием сил притяжений небесных тел - Земли,Луны,Солнца ,планет. Положение этих тел непрерывно изменяется ,причем их движение ,как и движение космического аппарата ,происходит под дейсвием сил всемирного тяготения. Таким образом ,мы сталкиваемся с необходимостью решения задачи о движении большого числа небесных тел (в том числе искуственного небесного тела - космического аппарата) под дейсвием сил взаимного притяжения.Такая задача носит название «задача N тел».

Решение этой задачи в общем случае встречает громадные трудности ,даже задача трех тел решена лишь для нескольких частных случаев. Но в космодинамике задача N тел имеет особый характер . Космический аппарат не оказывает практически никакого влияния на движение небесных тел.Такой случай известен в небесной механике как ограниченная задача N тел .При её решении движение Солнца,Земли ,Луны и планет является заданным ,так как оно прекрасно изученно астрономами и предсказывается ими на много лет вперед.

Расстояния от космического аппарата до Солнца ,Земли ,Луы и планетыв любой момент известны ,массы всех этих тел также известны ,а значит,известны по величине и направлению и ускорения, сообщаемые небесными телами космичекому аппарату. В самом деле ,если масса небесного тела M ,а масса космического аппарата m , то гравитационное ускорение a ,сообщаемое аппарату ,

равно силе притяжения

f*M (2)

r^2

Таким образом ,гравитационное ускорение зависит только от расстояния между притягиващимися телами и от массы притягивающего тела,но не зависит от массы притягиваемого тела .

Итак по формуле (2) мы можемвычислить гравитационное ускорение , сообщаемое космическому аппарату каждым небесным телом в отдельности ,а значит , можем вычислить и суммарное ускорение. Зная величину и направление начальной скорости космического аппарата,можно ,учитывая вычисленное ускорение рассчитать положение и скорость аппарата через небольшой промежуток времени ,например через секунду. Для нового момента нужно будет заново вычислить ускорение и затем рассчитать следующее положение аппарата и его скорость и т.д. Таким путем можно проследить все движение космического аппарата . Единственная неточность этого метода заключается в том что приходиться в течение каждого небольшого промежутка времени (шага расчета) считать ускорение при вычислениях неизменным ,в то время как оно переменно .Но точность расчета можно как угодно повысить ,уменьшив шаг .

Описанная процедура называется численным интегрированием .

Невесомость

При невесомости притяжение Земли (или другого небесного тела ) не будут вмешиваться в перемещения предметов относительно корабля .Отсутствуют какие-либо внешние поверхностные силы, действующие на корабль.Наличие же внешних поверхностных сил (сила сопр. среды, силы реакции опоры или подвеса)- обязательное условие сущ. состояния весомости .

Итак , тело, свободно и поступательно движущ. под влиянием одних сил тяготения, всегда нах. в состояниии невесомости.Примеры : корабль в мировом пр-ве , падающий лифт ,человек совершающий прыжок .

Теперь ,когда мы выяснили природу невесомости,уместно будет внести нек. поправки . Мы всегда имели ввиду, что гравитационное ускорение отд. деталей почти (но не в точности ) одинаково , т.к. расстояние отд. деталей от притягивающего тела (напр. Земли) примерно одинаковы .Фактически все эти неточности ничтожны . Перепад гравитационных ускорений (градиент гравитации ) в области пространства , занятой косм. кораблем, ничтожен. Например на высоте 230 км над пов. Земли ,земное гравит. ускорение уменьшается на 2,77*10^(-6) м/c^2 на каждый метр высоты .Когда космичекий корабль длиной 5 м располаг. вдоль линии , напр . на центр Земли его нижний конец получает ускорение на 0,00015 % больше ,чем верхний .

Таким образом ,нарушения невесомости ,вызваные наличием градинта гравитации (т.е. по существу неоднородностью поля тяготения), приводят не к «частичной невесомости» , а к совершенно осбому состоянию . В состоянии свободного полёта в поле тяготения тела несколько (весьма и весьма слабо) растянуты в радиальном направлении .

Центральное поле тяготения

Когда космический аппарат находиться в мировом пространсиве вдали от планет , достаточно учитывать притяжение одного лишь Солнца , потому что гравитациооные ускорения ,сообщаемые планетами (вследствии больших расстояний и относительно малости их масс) , ничтожно малы по сравнению с ускорением ,сообщаемым Солнцем .

Допустим теперь ,что мы изучаем движение космического обьекта вблизи Земли . Ускорение ,сообщаемое этому обьекту Солнцем ,довольно заметно : оно примерно равно ускорению ,сообщаемому Солнцем Земле (около 0,6 см/с^2 ); естественно было бы его учитывать ,если нас интересует движение обькта оносительно Солнца . Но если нас интересует движение космического обьекта относительно Земли ,то притяжение Солнца оказывется срвнительно салосущественным . Оно не будет вмешиваться в это движение аналогично тому ,как притяжение Земли не вмешивается в относительное движение предметов на борту корабля-спутника .То же касается и притяжения Луны, не говоря о притяжениях планет .

Будем считать небесное тело однородным материальным шаром , состоящим из из вложенных друг в друга однородных сферических слоев. Итак , небесное тело притягивает так ,будто бы его масса сосредоточена в его центре . Такое поле тяготения наз. центральным. Будем изучать движение в центральном поле тяготения космического аппарата ,получившего в начальный момент ,когда он находился на расстоянии rот небесного тела скорость v .Для дальнейшего воспользуемся законом сохранения мех. энергии , который справедлив для рассматриваемого случая , так как поле тяготения является потенциальным, наличием же негравитационных сил мы прнебрегаем . Кинетическая энергия космического аппарта равна (mV^2)/2 ,где m - масса апарата ,а v - его скорость . Потенциальная энергия в центральном поле тяготения выражается формулой

f*M*m

П= ,

r

где М- масса притягиващего небесного тела ,а r - расстояние от него до космического аппарата, потенцальная энергия ,будучи отрицательной , увеличивается с удалением от Земли , обращаясь в нуль на бесконечности .Тогда закон сохранения полной механической энергии запишется в следующем виде :



Здесь в левой части равенства стоит сумма кинетической и потоенциальной энергий в начальный момент , а в правой - в любой другой момент .Сократив на m и преобразовав, мы напишем интеграл энергии - важную формулу , выражающую скорость v космического аппарата на любом расстоянии r от центра притяжения:

или

где K=f*M - величина ,характеризующая поле тяготения конкретного небесного тела (гравитационный параметр) .Для Земли K=3,986005*10^5 км^3/c^2 для Солнца K=1,32712438*10^11 км^3/c^2 .


Траектории в цетральном поле тяготения

Путь , описываемый космическим аппаратом в пространстве наз. траекторией .

  1. Прямолинейные траектории . Если гачальная скорость равна нулю, то тело начинает падение к центу по прямой линии. Движение по прямой линии бдет и в том случае ,если начальная скорость направлена точно к центру (по радиусу)

  2. Эллиптические траектории.

Если начальная скорость на-

правлена не радиаьно,то тра-

ектория ужн не может быть

прямолинейной ,так как иск-


Случайные файлы

Файл
114165.rtf
RPsychology.doc
4658-1.rtf
CBRR1069.DOC
82584.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.