Чем чреват град из космоса (26832-1)

Посмотреть архив целиком

ЧЕМ ЧРЕВАТ ГРАД ИЗ КОСМОСА?


Обычный град человеку хорошо знаком. Чаще всего он не представляет никакой опасности. Лишь очень крупные градины размером более 1 см могут нанести некоторый ущерб: пробить непрочную кровлю, повредить посевы, ранить животное или человека. Отличительная особенность града как явления в том, что оно сводится к одновременному действию громадного числа сравнительно мелких частиц при сравнительно высокой их концентрации. И там, где одна частица могла бы не вызвать никакого эффекта за счет малой вероятности попадания в уязвимое место (подобно не полностью разрушившемуся космическому аппарату, сходящему с орбиты вокруг Земли), громадное число частиц воздействие наверняка окажет. В этом и проявляется эффект большого числа частиц для обычного града — ледяных частиц, образующихся в атмосфере при определенных условиях. А что произойдет, если в атмосферу Земли или другой планеты попадет большое число мелких частиц, не обязательно ледяных, но со столь же высокой концентрацией, влетающих из космоса с большой скоростью?

Возможен ли космический град?

Прежде всего возникает вопрос, может ли такое явление вообще иметь место. Влет отдельной частицы в атмосферу представляет собой, очевидно, факт вполне заурядный. Периодически Земля проходит через различные метеорные потоки (Леонид в ноябре, Персеид в августе, Драконид в октябре и др.). Если Земля оказывается в центральной части таких потоков, ночное небо озаряется вспышками тысяч метеоров. Это так называемые метеорные дожди. Однако и тогда концентрация влетающих частиц остается на много порядков меньше, чем в случае обычного града. Мы же ставим вопрос именно о потоках частиц с высокой концентрацией, как у града.

В естественных условиях такая высокая концентрация возникает при дроблении достаточно крупного метеороида, входящего в атмосферу, когда аэродинамическая нагрузка начинает превышать предел прочности тела. В зависимости от состава и прочностных свойств тело может развалиться при этом или на несколько крупных кусков, или на большое количество мелких. В последнем случае возникает поток частиц, напоминающий град. Не исключена и другая ситуация, когда достаточно хрупкое космическое тело рассыпается на множество мелких осколков под воздействием гравитационных или электромагнитных сил еще до входа в плотные слои атмосферы [1]. Достаточно высокая концентрация мелких частиц бывает также вблизи ядра кометы. И если такое ядро пролетит рядом с планетой, в атмосферу может одновременно вторгнуться громадное число пылинок. Наконец, в последние годы люди осознали, что вероятность столкновения Земли с крупным космическим телом типа астероида или кометы вовсе не равна нулю. Это — так называемая астероидная опасность [2]. Размышляя о том, как предотвратить ее, некоторые авторы предлагают разрушить подлетающее космическое тело ядерным взрывом, т.е. по существу превратить его в конгломерат пыли, крупных и мелких осколков и газа, создав таким образом достаточно концентрированный поток частиц разных размеров. Считается, что столкновение планеты с таким газопылевым облаком менее опасно, чем с одним компактным телом. Как будет показано ниже, это, строго говоря, заблуждение. Во многих случаях опасность от этого только усугубится. Как раз данное обстоятельство и подвигло нас провести исследования взаимодействия громадного количества мелких частиц с планетной атмосферой [3, 4], т.е. по существу выяснить, как поведет себя град, прилетающий из космоса, какую угрозу он в себе таит.

В этом аспекте интересны именно интенсивные взаимодействия больших объемов мелких частиц (космической пыли) с земной атмосферой, т.е. такие, когда концентрация влетающих частиц столь велика, что они взаимодействуют с атмосферным воздухом коллективным образом, а не индивидуально. Это примерно соответствует концентрации частиц обычных градин.

Сразу стоит отметить важнейшее отличие космического града от земного: скорость влета его частиц в атмосферу чрезвычайно высока. По законам небесной механики диапазон скоростей, с которыми тела могут влетать в земную атмосферу, заключен в пределах от 11.2 км/с до 70 км/с, т.е. от второй космической скорости для Земли до максимальной относительной скорости тел, принадлежащих к Солнечной системе. Соответственно кинетическая энергия и воздействие такого града будут неизмеримо выше. Другое важное отличие в том, что сначала он попадает в очень разреженные слои атмосферы, но затем плотность атмосферы и, естественно, взаимодействие резко нарастают, т.е. налицо сильная зависимость всех характеристик града от высоты над поверхностью планеты.

Возникают интересные вопросы. Сможет ли атмосфера защитить планету от такого града? Как будет происходить взаимодействие громадного количества частиц с атмосферой? Как оно будет зависеть от размеров и формы облака частиц, размеров и концентрации частиц в нем, плотности и состава их вещества, скорости влета в атмосферу? До какой высоты будут опускаться пылевые частицы? Полностью они будут испаряться или сгорать в атмосфере, либо их остатки, затормозившись, выпадут на Землю? Будут ли образовываться в атмосфере ударные волны, и какова будет их интенсивность и конфигурация? Будут ли они воздействовать на земную поверхность? Какие при этом будут возникать температуры? Возможно ли и при каких условиях возникновение мощного светового излучения, действующего на поверхность Земли? Каковы другие механизмы опасного воздействия на планету?

Явление глазами математики

Процессы, сопровождающие влет в атмосферу отдельной небольшой частицы или крупного тела, уже достаточно хорошо изучены — как теоретически, так и инструментально. А вот интенсивное взаимодействие влетающего из космоса облака мелких частиц с земной атмосферой до последнего времени не исследовалось. Поэтому об особенностях возникающих при этом физических процессов ничего не было известно. Рассматриваемое нами явление весьма сложное и носит гипотетический характер — реально наблюдать в природе его пока не приходилось, и в лабораторных условиях его не воспроизвести. Остается изучать его с помощью математического моделирования.

Проанализировать совместное двухфазное движение космических частиц и атмосферного воздуха позволяет хорошо известная модель двух взаимно проникающих континуумов [5]. Один из них — газовая среда, характеризующаяся рядом параметров, и прежде всего — давлением. Второй — среда пылевых частиц, в которой собственное давление отсутствует. Предполагается, что частицы занимают очень малый объем по сравнению с объемом газа. Для частиц космической пыли это так и есть. В расчетах мы изменяли начальную объемную долю частиц a0 в диапазоне от 10-9 до 10-3.

Что выбрать в качестве вещества частиц? Учитывая распространенность ледяных тел в космосе, мы остановились на льде нормальной плотности, и в этом полная схожесть с обычным градом. Для сравнения производимых эффектов рассматривались также частицы из льда пониженной плотности и из железа.

Возможны разнообразные формулировки возникающих задач, что связано с различными предположениями о геометрии течения. В общем случае к планете, обладающей атмосферой, подлетает облако мелких частиц произвольной формы и размера.

С точки зрения расчета наиболее проста одномерная постановка задачи, когда единственная координатная переменная — это высота над поверхностью Земли. Но более реалистично рассматривать эволюцию облака двумерной геометрии с осевой симметрией вокруг вектора скорости прилета. Ниже результаты приводятся именно для такого случая. Здесь частицы, подлетая к Земле по вертикали, первоначально заполняют сферический или другой осесимметричный объем. По мере опускания такого облака характеристики течения двухфазной системы начинают зависеть не только от времени и вертикальной координаты, но и от координаты поперечной — расстояния от оси падения.
 

Схема подлета к планете облака мелких частиц
(n0— скорость облака как целого).

Получающаяся система уравнений решалась численно с помощью модификации повышенной точности известного конечно-разностного метода С.К.Годунова. Имеет смысл выделить два крайних случая взаимодействия: локальное, когда облако частиц ничтожно в масштабах планеты и воздействует лишь на ограниченную область атмосферы, и глобальное, когда размер облака сопоставим с диаметром планеты.

Задачи о локальных взаимодействиях

Поведение града “местного значения” анализировалось на примере взаимодействия с атмосферой Земли частиц, занимающих шар диаметром от 0.1 до 10 км.

Качественные особенности течения таковы. При относительно большой концентрации частиц (например, при их начальной объемной доле a0=10-4) самые интенсивные процессы взаимодействия протекают в головной части облака. Там повышается давление, возрастает концентрация частиц, перед облаком образуется мощная ударная волна. В основной части облака взаимодействие вначале слабое: скорости частиц и атмосферного газа быстро выравниваются, что в дальнейшем способствует гораздо более глубокому их проникновению в атмосферу по сравнению со случаем влета одиночной частицы. Позднее облако приобретает весьма сложную конфигурацию, по существу распадаясь на отдельные фрагменты. Характерно, что в этом случае, как и в других, не происходит увеличения поперечного сечения облака в процессе взаимодействия. Испаряясь, частицы значительно теряют массу (на уровне 30 км остается около 3% от первоначальной), а затем и полностью исчезают. Их пары, сохраняющие высокую скорость, проходят еще значительное расстояние, прежде чем на высоте H~20 км начинается их существенное торможение. После этого ударная волна продолжает свое движение свободно, как это бывает при взрыве в атмосфере. При ее подходе к земной поверхности избыточное давление составит для приведенного на рисунке примера 0.1 атм, от чего в домах могут быть выбиты все стекла.


Случайные файлы

Файл
77219-1.rtf
101262.rtf
41757.rtf
HDD_Driver.doc
129437.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.