Матан Экзамен Часть 4 (24)

Посмотреть архив целиком

Пусть функция f(x) определена на полуинтервале (a, b], интегрируема по любому отрезку , и имеет бесконечный предел при . Несобственным интегралом от f(x) по отрезку [a, b] называется предел . Если этот предел конечен, говорят, что интеграл сходится; если предел не существует или бесконечен, говорят, что интеграл расходится.
Примеры: 17. - интеграл расходится;
18. - интеграл сходится.

Признак сравнения в предельной форме. Пусть неотрицательные функции f(x) и g(x) интегрируемы по любому отрезку и пусть существует конечный . Тогда несобственные интегралы и сходятся или расходятся одновременно.
Сравнение интеграла со "стандартным" интегралом в предельной форме даёт правило: если при неотрицательная функция f(x) - бесконечно большая порядка роста ниже первого по сравнению с , то сходится; если f(x) имеет порядок роста единица или выше, то интеграл расходится. Примеры:
22. . Так как при , и интеграл от большей функции сходится, то данный интеграл сходится;
23. . При , p = 1, интеграл расходится;

2) Система функций y1(x), y2(x), …, yn(x) называется линейно зависимой на интервале (a, b), если существует набор постоянных коэффициентов , не равных нулю одновременно, таких, что линейная комбинация этих функций тождественно равна нулю на (a, b): для .
Если равенство для возможно только при , система функций y1(x), y2(x), …, yn(x) называется линейно независимой на интервале (a, b).
Другими словами, функции y1(x), y2(x), …, yn(x) линейно зависимы на интервале (a, b), если существует равная нулю на (a, b) их нетривиальная линейная комбинация. Функции y1(x), y2(x), …, yn(x) линейно независимы на интервале (a, b), если только тривиальная их линейная комбинация тождественно равна нулю на (a, b).

Примеры: 1. Функции 1, x, x2, x3 линейно независимы на любом интервале (a, b). Их линейная комбинация - многочлен степени - не может иметь на (a, b) больше трёх корней, поэтому равенство = 0 для возможно только при .

Определителем Вронского (вронскианом) системы n - 1 раз дифференцируемых функций y1(x), y2(x), …, yn(x) называется определитель



.Теорема о вронскиане линейно зависимой системы функций. Если система функций y1(x), y2(x), …, yn(x) линейно зависима на интервале (a, b), то вронскиан этой системы тождественно равен нулю на этом интервале.
Док-во. Если функции y1(x), y2(x), …, yn(x) линейно зависимы на интервале (a, b), то найдутся числа , из которых хотя бы одно отлично от нуля, такие что

для .

(27)

Продифференцируем по x равенство (27) n - 1 раз и составим систему уравнений
Будем рассматривать эту систему как однородную линейную систему алгебраических уравнений относительно . Определитель этой системы - определитель Вронского (26). При эта система имеет нетривиальное решение , следовательно, в каждой точке её определитель равен нулю. Итак, W(x) = 0 при , т.е. на (a, b).






Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.