Матан Экзамен Часть 4 (29)

Посмотреть архив целиком

Декартовы координаты. В пункте 11.1.4. мы сформулировали Геометрический смысл определённого интеграла: если f(x)>0 на отрезке [a,b], то равен площади криволинейной трапеции ABCD, ограниченной снизу отрезком [a,b], слева и справа - прямыми x = a и x = b , сверху - функцией y = f(x) . Следствие: если фигура ограничена сверху кривой y = f(x) , снизу - кривой y = g(x) , слева и справа - отрезками прямых x = a и x = b, то её площадь равна .
Пример: Найти площадь области D, ограниченной кривыми y = x2 + x + 11, y = 2 x - 9, при условии, что (дальше мы будем писать так: ).
При решении таких задач следует обязательно изобразить исследуемый геометрический объект. Для определения нижнего предела интегрирования надо найти точку пересечения кривых; уравнение x2 + x + 11 = 2 x - 9 имеет два корня: x = -1 и x = 2. Подходящий корень - x = -1. Область ограничена сверху параболой, снизу - прямой, справа - прямой x = 1, крайняя левая точка - x = -1, поэтому Если область имеет более сложную структуру, её следует разбить на простые части .
13.2.2. Область задана в полярных координатах.. Если область D - сектор, ограниченный лучами , и кривой , формула для вычисления площади получается с помощью следующей интегральной конструкции. Разобьём промежуток лучами на n частей; . На каждом из отрезков выберем произвольную точку , найдём , тогда равно площади сектора круга, ограниченного лучами , и дугой окружности радиуса . Объединение этих секторов - снова ступенчатая фигура, приближающая данную область D, её площадь . При разница между Sступ и S - площадью области D - будет тоже стремиться к нулю, т.е. .

2) ) Линейный дифференциальный оператор и его свойства. Множество функций, имеющих на интервале (a, b) не менее n производных, образует линейное пространство. Рассмотрим оператор Ln(y), который отображает функцию y(x), имеющую производных, в функцию, имеющую k - n производных:

(23)

С помощью оператора Ln(y) неоднородное уравнение (20) можно записать так:

Ln(y) = f(x);

(24)

однородное уравнение (21) примет вид

Ln(y) = 0)

Дифференциальный оператор Ln(y) является линейным оператором.

Теорема о линейности пространства частных решений линейного однородного дифференциального уравнения. Множество частных решений линейного однородного дифференциального уравнения образует линейное пространство.
Док-во
. Требуется доказать, что множество частных решений линейного однородного дифференциального уравнения (25) (или, что тоже самое, (21)), т.е. не менее n раз дифференцируемых функций y(x) для которых Ln(y) = 0, является линейным пространством. Для этого достаточно доказать, что если функции y, y1(x), y2(x) - частные решения (25), то функции Cy, y1(x) + y2(x) - тоже частные решения (25). Действительно, пользуясь свойствами пункта 14.5.2. Линейный дифференциальный оператор и его свойства, получим
если Ln(y) = 0, то Ln(Cy) = CLn(y) = 0;
если Ln(y1) = 0 и Ln(y2) = 0, то Ln(y1 + y2) = Ln(y1) + Ln(y2) = 0.
Следствие. Если y1(x), y2(x), …, yn(x) - частные решения уравнения (25), то их линейная комбинация C1 y1(x) + C2 y2(x) + …+ Cn yn(x) - тоже частное решение этого уравнения.

Фундаментальной системой решений линейного однородного дифференциального уравнения n-го порядка называется любая линейно независимая система y1(x), y2(x), …, yn(x) его n частных решений.








Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.