Матан Экзамен Часть 3 (19!)

Посмотреть архив целиком

Пусть функция f(x) определена на полуинтервале (a, b], интегрируема по любому отрезку , и имеет бесконечный предел при . Несобственным интегралом от f(x) по отрезку [a, b] называется предел . Если этот предел конечен, говорят, что интеграл сходится; если предел не существует или бесконечен, говорят, что интеграл расходится.
Примеры: 17. - интеграл расходится;
18. - интеграл сходится.

Сходимость интеграла в зависимости от параметра!

2) ) Такие уравнения имеют вид и , где - действительные числа, а функция f(x) непрерывна на интервале интегрирования X.

Общее решение y линейного неоднородного дифференциального уравнения на интервале X с непрерывными на том же промежутке X коэффициентами и функцией f(x) представляет собой сумму , где y0 - общее решение соответствующего ЛОДУ , а - какое-нибудь частное решение исходного ЛНДУ.


Таким образом, общее решение линейного неоднородного дифференциального уравнения с постоянными коэффициентами ищем в виде , где - какое-нибудь его частное решение, а – общее решение соответствующего однородного уравнения .

Теорема о структуре общего решения линейного неоднородного дифференциального уравнения. Теорема о наложении решений. Мы установили, что для того, чтобы решить линейное однородное уравнение, необходимо найти его фундаментальную систему решений. В этом разделе покажем, что решение неоднородного уравнения сводится к решению однородного, если удаётся найти частное решение этого неоднородного уравнения. Справедлива
Терема 14.5.9.1 о структуре общего решения линейного неоднородного дифференциального уравнения.
Общее решение линейного неоднородного дифференциального уравнения с непрерывными на интервале (a, b) коэффициентами и правой частью

Ln(y) = ;

(20)

равно сумме общего решения соответствующего однородного уравнения

Ln(y) = ;

(21)

и частного решения неоднородного уравнения (20):
yон(x) = yоо(x) + yчн(x) = (C1 y1(x) + C2 y2(x) + …+ Cn yn(x)) + yчн(x).
Док-во. Мы должны доказать, что если известно частное решение yчн(x) неоднородного уравнения (20), то любое его другое частное решение может быть получено по формуле при некотором наборе постоянных C1, C2, …, Cn. Так как и yчн(x), и - решения неоднородного уравнения (20), то Ln(yчн(x)) = f(x) и , следовательно, по линейности оператора Ln(y), . Функция удовлетворяет однородному уравнению, поэтому содержится в формуле C1 y1(x) + C2 y2(x) + …+ Cn yn(x) при некотором наборе постоянных C1, C2, …, Cn: . Таким образом, , что и требовалось доказать.
Из предыдущей теоремы следует, что для нахождения общего решения линейного неоднородного дифференциального уравнения необходимо знать его частное решение. Здесь мы сформулируем и докажем теорему, которая позволяет свести нахождение частного решения неоднородного уравнения с правой частью вида ( - постоянные) к, возможно, более простой задаче нахождению частных решений этого уравнения с правыми частями вида
f(x) = f1(x), f(x)=f2(x):


Случайные файлы

Файл
77805.doc
186882.rtf
150996.rtf
13495.rtf
614.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.