Матан Экзамен Часть 3 (20)

Посмотреть архив целиком

Свойства определённого интеграла.

  1. Линейность. Если функции y = f(x), y = g(x) интегрируемы по отрезку [a,b] , то по этому отрезку интегрируема их линейная комбинация A f(x) + B g(x) (A, B = const), и
    .
    Док-во: для любого разбиения отрезка и любого выбора точек выполняется . Перейдем в этом равенстве к пределу при . Так как существуют пределы интегральных сумм, стоящих в левой части равенства, то существует предел линейной комбинации этих сумм, следовательно, существует предел правой интегральной суммы, откуда следует истинность и утверждения, и равенства.
    2. Аддитивность
    . Если y = f(x) интегрируема по отрезку [a,b] и точка c принадлежит этому отрезку, то .
    Док-во
    . Если f(x) удовлетворяет условиям интегрируемости по отрезку [a,b], то она удовлетворяет условиям интегрируемости по отрезкам [a,c] и [c,b]. Будем брать такие разбиения отрезка [a,b] , чтобы точка c являлась одним из узлов xi: c = xi0, . Тогда . В этом равенстве первая сумма справа - интегральная сумма для , вторая - для . Переходим к пределу при . Пределы для всех трёх сумм существуют, и .
    Свойство аддитивности остаётся верным при любом расположении точек, если только функция интегрируема по самому широкому интервалу. Пусть, например, c < b < a, и f(x) интегрируема по [c, a]. Тогда, по доказанному, . Отсюда и из определения интеграла для случая, когда нижний предел больше верхнего, следует, что .
    При формулировании и доказательстве следующих свойств предполагаем, что
    b > a.
    3. Теорема об интегрировании неравенств
    . Если в любой точке выполняется неравенство , и функции f(x), g(x) интегрируемы по отрезку [a,b], то .
    Док-во. Для любого разбиения отрезка и любого выбора точек при . Переходя в этом неравенстве к пределу при , получаем требуемое неравенство.
    4. Теоремы об оценке интеграла
    .
    5.1. Если на отрезке [a,b] функция удовлетворяет неравенству , то .
    Док-во. Докажем левое неравенство (цифрами над знаками импликации обозначены номера применяемых ранее доказанных свойств): . Аналогично доказывается и правое неравенство.
    5.2.
    Если функция f(x) интегрируема по отрезку [a,b], то .
    Док-во
    . .
    5. Теорема о среднем
    . Если f(x) непрерывна на отрезке [a,b], то существует точка , такая что .
    Док-во
    . Функция, непрерывная на отрезке, принимает на этом отрезке своё наименьшее m и наибольшее M значения. Тогда . Число заключено между минимальным и максимальным значениями функции на отрезке. Одно из свойств функции, непрерывной на отрезке, заключается в том, что эта функция принимает любое значение, расположенное между m и M. Таким образом, существует точка , такая что .
    Это свойство имеет простую геометрическую интерпретацию: если непрерывна на отрезке [a,b], то существует точка такая, что площадь криволинейной трапеции ABCD равна площади прямоугольника с основанием [a,b] и высотой f(c) (на рисунке выделен цветом).

2) Опр. Линейным дифференциальным уравнением n-го порядка называется уравнение, в которое неизвестная функция y(x) и её производные входят линейно, т.е. в первой степени:

Если правая часть уравнения тождественно равна нулю на рассматриваемом интервале (f(x)=0 при ), то уравнение называется однородным. Таким образом, однородное уравнение - это уравнение вида

Теорема существования и единственности решения задачи Коши для линейного уравнения: если функции f(x), pi(x), i = 1, 2, …, n непрерывны на интервале (a, b), x0 - произвольная точка этого интервала, то для любых начальных условий (22) существует единственная функция y(x), определённая на всём интервале (a, b) и удовлетворяющая уравнению (20) и начальным условиям


Случайные файлы

Файл
154916.rtf
28697.rtf
SEMKON.DOC
70001.rtf
170110.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.