Связь между потенциальной энергией и силой. Потенциальная энергия тяготения и упругих деформаций.

Пространство, в котором действуют консервативные силы, называется потенциальным полем. Каждой точке потенциального поля соответствует некоторое значение силы F, действующей на тело, и некоторое значение потенциальной энергии U. Значит, между силой F и U должна быть связь , с другой стороны, dA = –dU, следовательно Fdr=-dU, отсюда:

Проекции вектора силы на оси координат:

Вектор силы можно записать через проекции: , F = –grad U, где .

Градиент – это вектор, показывающий направление наибыстрейшего изменения функции. Следовательно, вектор направлен в сторону наибыстрейшего уменьшения U.

Потенциальная энергия упругой деформации (пружины) Найдём работу, совершаемую при деформации упругой пружины.
Сила упругости Fупр = –kx, где k – коэффициент упругости. Сила непостоянна, поэтому элементарная работа dA = Fdx = –kxdx.
(Знак минус говорит о том, что работа совершена над пружиной). Тогда , т.е. A = U1 – U2. Примем: U2 = 0, U = U1, тогда .

На рис. 5.5 показана диаграмма потенциальной энергии пружины.

Здесь E = K + U – полная механическая энергия системы, К – кинетическая энергия в точке x1.

Потенциальная энергия при гравитационном взаимодействииРабота тела при падении A = mgh, или A = U – U0.
Условились считать, что на поверхности Земли h = 0, U0 = 0. Тогда A = U, т.е. A = mgh.Для случая гравитационного взаимодействия между массами M и m, находящимися на расстоянии r друг от друга, потенциальную энергию можно найти по формуле .На рис. 5.4 изображена диаграмма потенциальной энергии гравитационного притяжения масс M и m.

Здесь полная энергия E = K + E. Отсюда легко найти кинетическую энергию: K = E – U.