Эволюционное учение (10900)

Посмотреть архив целиком












Доклад по биологии

« Эволюционное учение »











02.06.2009г

Кепдип Нжог Аший Флориян

Гр. 8323 б


МИКРОЭВОЛЮЦИЯ


Микроэволюция: это совокупность пусковых эволюционных процессов, протекающих внутри вида, в пределах отдельных или смежных популяций. При этом популяции рассматриваются как элементарные эволюционные структуры; мутации, лежащие в основе наследственной изменчивости, — как элементарный эволюционный материал, а мутационный процесс, волны жизни, разные формы изоляции и естественный отбор — как элементарные эволюционные факторы. Под давлением этих факторов происходит изменение генотипического состава популяции — ведущий пусковой механизм эволюционного процесса. Ранее термин «Микроэволюция» употреблялся некоторыми эволюционистами для обозначения изменчивости и формообразования внутри вида и противопоставлялся макроэволюции. Современное учение о Микроэволюция развилось после синтеза генетики с классическим дарвинизмом, начало чему было положено работами советского генетика С. С. Четверикова (1926) и английского генетика Р. А. Фишера (1930). По современным воззрениям (иногда называемым «синтетической теорией эволюции»), все основные пусковые механизмы эволюции (на всех её уровнях) протекают внутри видов, т. е. на микроэволюционном уровне. Микроэволюция завершается видообразованием, т. е. возникновением видов, репродуктивно изолированных от исходных и других близких видов. Поэтому нет принципиальных различий между Микроэволюция и макроэволюцией, различающихся лишь временными и пространственными масштабами. Для успеха исследований на микроэволюционном уровне необходим синтез популяционно-генетических опытов, количественных описаний процессов популяционной динамики и экологии, изучения этологических явлений, аналитического применения теоретических положений генетики и, наконец, построения математических моделей внутрипопуляционных и межпопуляционных процессов.

Основные формы организации жизни:


Определение жизни

Вопросы о происхождении жизни, закономерностях исторического развития в различные геологические эпохи всегда интересовали человечество. Понятие жизнь охватывает совокупность всех живых организмов на Земле и условия их существования.

Сущность жизни заключается в том, что живые организмы оставляют после себя потомство. Наследственная информация передается из поколения в поколение, организмы саморегулируются и восстанавливаются при воспроизводстве потомства. Жизнь — это особая качественная, наивысшая форма материи, способная, оставляя потомство, к самовоспроизведению.

Понятию жизнь в разных исторических периодах давались различные определения. Первое научно правильное определение дал Ф. Энгельс: "Жизнь есть способ существования белковых тел, и этот способ существования состоит по своему существу в постоянном самообновлении химических составных частей этих тел". При прекращении процесса обмена веществ между живыми организмами и окружающей средой белки распадаются, и жизнь исчезает.

Опираясь на современные достижения биологической науки, русский ученый М. В. Волькенштейн дал новое определение понятию жизнь: "Живые тела, существующие на Земле, представляют собой открытые, саморегулирующиеся и самовоспроизводящиеся системы, построенные из биополимеров — белков и нуклеиновых кислот". Это определение не отрицает наличие жизни и на других планетах космического пространства. Жизнь называется открытой системой, на что указывает непрерывный процесс обмена веществ и энергии с окружающей средой.

На основании последних научных достижений современной биологической науки дано следующее определение жизни: "Жизнь — это открытые саморегулирующиеся и самовоспроизводящиеся системы совокупностей живых организмов, построенные из сложных биологических полимеров — белков и нуклеиновых кислот".

Основой всего живого считаются нуклеиновые кислоты и белки, так как они функционируют в клетке, образовывают сложные соединения, которые входят в структуру всех живых организмов.


Основные свойства живых организмов

Живые организмы отличаются от неживой природы присущими им свойствами. К характерным свойствам живых организмов относятся: единство химического состава, обмен веществ и энергии, сходство уровней организации. Для живых организмов характерны также размножение, наследственность, изменчивость, рост и развитие, раздражимость, дискретность, саморегуляция, ритмичность и др.


Изменчивость. Мутационный процесс


Мутация — это внезапное наследственное изменение, вызванное резким структурным и функциональным изменением генетического материала. Генетический материал организован в иерархию структурно-функциональных единиц — от молекулярных сайтов внутри гена до целых хромосом и геномов. Соответственно существуют разные типы мутаций — от генных до геномных. Эта глава посвящена в основном генным мутациям.

Внезапные наследственные изменения фенотипа могут быть вызваны не только структурными изменениями генов, но и другими генетическими процессами. Мутации могут быть истинными или ложными. Фенотипические изменения сами по себе не дают представления о тех генетических процессах, которые их вызывают. На основании одних лишь прямых наблюдений трудно различать разные типы истинных и ложных мутаций. Существует также, как мы увидим в дальнейшем, внезапное изменение генетического материала, не вызывающее фенотипического эффекта.

Генные мутации

Генная, или точковая, мутация представляет собой изменение последовательности нуклеотидов в пределах одного гена, приводящее к изменению характера действия гена. Как правило (за одним исключением, которое будет описано в следующем разделе), это молекулярное изменение в гене, которое вызывает фенотипический эффект. Допустим, что какой-то ген содержит в некоторой своей точке кодов, или триплет, ЦТТ, кодирующий одну из аминокислот полипептидной цепи — глутаминовую кислоту. В результате замены всего лишь одного нуклеотида кодом ЦТТ может превратиться в кодон ГТТ, Этот новый кодон обусловливает синтез уже не глутаминовой кислоты, а глутамина, так что в полипептидной цепи, синтезируемой под действием измененного гена, на месте глутаминовой кислоты окажется глутамин. Первоначальная и мутантная молекулы белка отличаются одна от другой, и вполне возможно, что это влечет за собой другие, вторичные, фенотипические различия.

Стабильность генов на протяжении последовательных поколений клеток и особей, а следовательно, и консервативность наследственности обусловлены точностью процесса копирования при репликации гена, Однако процесс копирования несовершенен. Время от времени при копировании возникают ошибки. Генные мутации можно рассматривать как такие ошибки копирования.

Новый мутантный аллель точно реплицируется до тех пор, пока не произойдет следующее мутационное изменение. Таким образом, в результате генной мутации появляется пара или серия гомологичных аллелей. И наоборот, наличие аллельной изменчивости по любому гену в конечном счете означает, что этот ген в то или иное время претерпел мутацию.

Любой ген, входящий в состав генотипа, по-видимому, подвержен мутированию. Во всяком случае в генах, контролирующих весьма разнообразные признаки, наблюдаются мутации. Например, у Drosophila melanogaster известны мутанты со слегка сморщенными крыльями, сильно укороченными крыльями или вообще бескрылые; мутанты с белыми или пурпурными глазами; мутанты с разнообразными изменениями щетинок и т. п. Известен ряд мутантных разновидностей смородинного томата (Lycopersicon pimpinellifolium), различающихся по форме листьев. Биохимические мутации, затрагивающие различные звенья метаболических процессов, хорошо известны у микроорганизмов и имеются, хотя и гораздо менее изучены, у высших организмов.

По степени фенотипического проявления генные мутации варьируют в широком диапазоне — от мутаций со слабыми эффектами до мутаций, вызывающих значительные изменения фенотипа. Эти два экстрёмальных типа называют соответственно малыми мутациями и макромутациями. Хорошо заметные, но не обладающие сильным действием мутации типичны для средней части диапазона. Примерами малых мутаций служат мутанты Drosophila melanogaster со статистически незначительными отклонениями от нормальной жизнеспособности или от нормального числа щетинок. Примером макромутации служит мутант tetraptera у D. melanogaster с четырьмя крыльями вместо двух. Он представляет собой резкое отклонение от двукрылости, характерной для сем. Drosophilidae и для отряда Diptera.

У диплоидных животных и растений значительную долю новых мутаций составляют рецессивные мутации, а гены дикого типа доминируют. Важное следствие рецессивности многих мутантных аллелей заключается в том, что они не подвергаются действию отбора немедленно, но могут сохраняться в диплоидной популяции на протяжении многих поколений.



Типы точковых мутаций

Точковые мутации можно разделить на несколько типов в зависимости от характера молекулярного изменения в гене. Здесь мы кратко опишем четыре типа таких мутаций (Wallace, 1981*)

1. Missense-мутация. К этому типу принадлежит мутация, описанная в предыдущем разделе. В одном из триплетов происходит замена одного основания (например, ЦТТ→ГТТ), в результате чего измененный триплет кодирует аминокислоту, отличную от той, которую кодировал прежний триплет.

2. Мутация со сдвигом рамки. Если в последовательность ДНК включается новое основание или пара оснований, то все лежащие за ними триплеты изменяются, что влечет за собой изменение синтезируемого полипептида. Возьмем, например, последовательность АТТ—ТАГ—ЦГА, перед которой включилось основание Т. В результате получится новая последовательность ТАТ—ТТА—ГЦГ—А… К такому же результату приведёт утрата одного из имеющихся оснований.


Случайные файлы

Файл
2521-1.rtf
81922.rtf
46326.rtf
62387.rtf
73844.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.