Билет 7

1.Диаграмма Fe-Fe3C, ее фазовый и структурный анализ. Влияние углерода на структуру и свойства сталей.



Диаграмма состояния «Железо – цементит». Превращения в сплавах на основе железа при нагреве и охлаждении.

Feα от низких температур до 768°C, эта фаза имеет решётку о.ц.к., низкую прочность и твёрдость 80 HB, низкий предел текучести, удельный вес 7,8 г/см3, имеет магнитные свойства (ферромагнетик), растворяет углерод 0,006% при 20°C и 0,02% при 727°C. Твёрдый раствор углерода в Feα наз. феррит. Свойства феррита близки к свойствам чистого Fe. Feβ – о.ц.к., существует от 768°C до 910°C, растворяет углерод в небольших количествах, немагнитен, при 768°C теряет магнетизм, 768°C – точка Кюри, парамагнетик. В 910-1400°C существует Feγ, решётка г.ц.к., это железо немагнитно, растворяет 2,14% C при 1147°C. Раствор углерода в Feγ наз. аустенит, немагнитен, твёрже феррита, достаточно пластичен. Feδ существует в 1400-1539°C. 1539°C – плавление Fe. Переход FeαFeγ происходит с изменением объёма (1%) (у α больше V). Fe3C - 6,7% C, твёрдость 800 HB, Fe3C – цементит, при низких температурах магнитен. Fe3CFe+ Графит. При 1147°C идёт реакция, в результате которой образуется эвтектика: смесь аустенита и цементита – ледебурит. [А+Ц] - 4,3% C. Феррит+цементит – Перлит. [Ф+Ц] – 0,8% C, твёрдость HB 800. Ла – [А+Ц], Лп – [П+Ц], А→П. Из жидкости выделяется ЦI, из А - ЦII, из Ф - ЦIII. До 2,14% C – стали, после – чугуны. Сначала жидкость переходит в аустенит, потом происходит переход жидкости в ледебурит аустенитовый (эвтектическая реакция), аустенит переходит в перлит (эвтектоидная реакция), аустенит переходит в феррит.
















2. Титан и сплавы на его основе. Влияние легирующих элементов на полиморфизм титана и свойства , + и псевдо- сплавов, Термическая обработка сплавов.


Титан серебристо-белый легкий металл с плотностью 4,5 г/см3. Температура плавления титана зависит от степени чистоты и находится в пределах 1660…1680oС.

Чистый иодидный титан, в котором сумма примесей составляют 0,05…0,1 %, имеет модуль упругости 112 000 МПа, предел прочности около 300 МПа, относительное удлинение 65%. Наличие примесей сильно влияет на свойства. Для технического титана ВТ1, с суммарным содержанием примесей 0,8 %, предел прочности составляет 650 МПа, а относительное удлинение – 20 %.

При температуре 882oС титан претерпевает полиморфное превращение, α–титан с гексагональной решеткой переходит в β– титан с объемно-центрированной кубической решеткой. Наличие полиморфизма у титана создает предпосылки для улучшения свойств титановых сплавов с помощью термической обработки.

Титан имеет низкую теплопроводность. При нормальной температуре обладает высокой коррозионной стойкостью в атмосфере, в воде, в органических и неорганических кислотах (не стоек в плавиковой, крепких серной и азотной кислотах), благодаря тому, что на воздухе быстро покрывается защитной пленкой плотных оксидов. При нагреве выше 500oС становится очень активным элементом. Он либо растворяет почти все соприкасающиеся и ним вещества, либо образует с ними химические соединения.

Титановые сплавы имеют ряд преимуществ по сравнению с другими: сочетание высокой прочности (σв=800…1000 МПа) с хорошей пластичностью (δ=12…25%); малая плотность, обеспечивающая высокую удельную прочность; хорошая жаропрочность, до 600…700oС;

высокая коррозионная стойкость в агрессивных средах.

Однородные титановые сплавы, не подверженные старению, используют в криогенных установках до гелиевых температур.

В результате легирования титановых сплавов можно получить нужный комплекс свойств. Легирующие элементы, входящие в состав промышленных титановых сплавов, образуют с титаном твердые растворы замещения и изменяют температуру аллотропического превращения. Влияние легирующих элементов на полиморфизм титана показано на рис. 21.1.


Рис.21.1. Влияние легирующих элементов на полиморфизм титана:

 

Элементы, повышающие температуру превращения, способствуют стабилизации α— твердого раствора и называются α–стабилизаторами, это – алюминий, кислород, азот, углерод.

Элементы, понижающие температуру превращения, способствуют стабилизации β– твердого раствора и называются β– стабилизаторами, это – молибден, ванадий, хром, железо.

Кроме α– и β–стабилизаторов различают нейтральные упрочнители: олово, цирконий, гафний.

В соответствии с влиянием легирующих элементов титановые сплавы при нормальной температуре могут иметь структуру α или α+β.

Сплавы на основе титана можно подвергать всем видам термической обработки, химико-термической и термомеханической обработке. Упрочнение титановых сплавов достигается легированием, наклепом, термической обработкой.

Часто титановые сплавы легируют алюминием, он увеличивает прочность и жаропрочность, уменьшает вредное влияние водорода, увеличивает термическую стабильность. Для повышения износостойкости титановых сплавов их подвергают цементации или азотированию.

Основным недостатком титановых сплавов является плохая обрабатываемость режущим инструментом.

По способу производства деталей различаются деформируемые (ВТ 9, ВТ 18) и литейные (ВТ 21Л, ВТ 31Л) сплавы.

 

Области применения титановых сплавов: 

  • авиация и ракетостроение (корпуса двигателей, баллоны для газов, сопла, диски, детали крепежа);

  • химическая промышленность (компрессоры, клапаны, вентили для агрессивных жидкостей);

  • оборудование для обработки ядерного топлива;

  • морское и речное судостроение (гребные винты, обшивка морских судов, подводных лодок);

  • криогенная техника (высокая ударная вязкость сохраняется до –253oС).



Случайные файлы

Файл
94651.rtf
56289.rtf
27823-1.rtf
3434.rtf
11289-1.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.