24 Решенных билета (Билет 10)

Посмотреть архив целиком

Билет 10

1. Формирование структуры литых сплавов. Влияние скорости охлаждения на степень переохлаждения и величину кристаллов. Модифицирование. Получение монокристаллов, аморфных сплавов.


Строение металлического слитка.


Зона I: Высокая скорость охлаждения. Структура – мелкие, равноосные кристаллы.

Зона II: Быстрое охлаждение, большая разность температур, мелкие кристаллы, растущие навстречу оттоку тепла. Игольчатые (столбчатые) дендриты.

Зона III: Центральная часть слитка. Медленное охлаждение. Форма кристаллов: крупные равноосные. Чем ближе к центру, тем больше содержание вредных примесей. Примеси можно удалить механически,

Зона IV: В верхней части слитка, концентрируется наибольшая часть легких примесей (шлаки), газовых пузырей, трещин, раковин, и т. д. После изготовления эту часть удаляют.

Наиболее качественными являются слитки с одинаковой структурой кристаллов по всему объему, поэтому зону I часто механически удаляют.

Кристаллизация – переход из жидкого в твердое состояние с образование кристаллической решетки.

T0 – теоретическая температура кристаллизации – температура, при которой уровни свободной энергии жидкости и твердого состояния одинаковы. При температуре кристаллизации вещество находится в безразличном состоянии. 00С – теоретическая температура кристаллизации воды. Для начала кристаллизации необходимо, чтобы Tд<T0, где Tд – действительная температура начала кристаллизации.

Важнейшая характеристика процесса кристаллизации – степень переохлаждения: T = T0 Tд. Начало кристаллизации при T<T0 сопровождается образованием внутри жидкости мельчайших зародышей кристаллов, то есть небольших групп атомов, располагающихся фиксировано друг относительно друга и образующих кристаллическую решетку.

При образовании кристаллической решетки происходят следующие процессы:

1) Уменьшение свободной энергии при T<T0 за счет образования кристаллической решетки, так как кристаллообразное состояние более выгодно.

2) Увеличение свободной энергии за счет образования поверхности раздела между жидкостью и кристаллом. Возникновение поверхности натяжения. Устойчивым будет тот кристалл, для которого уменьшение свободной энергии больше чем ее увеличение.

rкр – критический радиус кристалла.


rкр1 < rкр2 означает, что при некоторой температуре T2 начальный объем зародыша должен быть больше, следовательно вероятность его самопроизвольного развития меньше. Чем меньше степень переохлаждения, тем меньше зародышей кристаллов образуется в единице объема жидкости за единицу времени.

Зависимость числа зародышей кристаллов и скорости их роста от степени переохлаждения.

Чем больше T = T0 Tд, тем меньше Tд. При T1 – число зародышей мало, скорость роста отлична от нуля. В результате кристаллы вырастают до крупных размеров. При T2 – число зародышей резко возрастает, скорость роста увеличивается, но кристаллы из-за большого количества не успевают вырасти до крупных размеров (структура из мелких кристаллов).

Чем мельче кристаллы в структуре металла, тем выше прочность и твердость, меньше пластичность. Для малых объемов металла T можно изменять за счет изменения скорости охлаждения.




2. Конструкционные материалы высокой удельной прочности: композиционные материалы (к.м.). Зависимость свойств к.м. от вида, количества, формы упрочнителей. Волокнистые и дисперсноупрочненные к.м.

Композиционные материалы – искусственно созданные материалы, которые состоят из двух или более компонентов, различающихся по составу и разделенных выраженной границей, и которые имеют новые свойства, запроектированные заранее.

Компоненты композиционного материала различны по геометрическому признаку.

Компонент, непрерывный во всем объеме композиционного материала, называется матрицей.

Компонент прерывистый, разделенный в объеме композиционного материала, называется арматурой.

Матрица придает требуемую форму изделию, влияет на создание свойств композиционного материала, защищает арматуру от механических повреждений и других воздействий среды.

В качестве матриц в композиционных материалах могут быть использованы металлы и их сплавы, полимеры органические и неорганические, керамические, углеродные и другие материалы. Свойства матрицы определяют технологические параметры процесса получения композиции и ее эксплуатационные свойства: плотность, удельную прочность, рабочую температуру, сопротивление усталостному разрушению и воздействию агрессивных сред.

Армирующие или упрочняющие компоненты равномерно распределены в матрице. Они, как правило, обладают высокой прочностью, твердостью и модулем упругости и по этим показателям значительно превосходят матрицу. Вместо термина армирующий компонент можно использовать термин наполнитель.

Свойства композиционных материалов зависят не только от физико-химических свойств компонентов, но и от прочности связи между ними. Максимальная прочность достигается, если между матрицей и арматурой происходит образование твердых растворов или химических соединений.

В композиционных материалах с нуль-мерным наполнителем наибольшее распространение получила металлическая матрица. Композиции на металлической основе упрочняются равномерно распределенными дисперсными частицами различной дисперсности. Такие материалы отличаются изотропностью свойств.

Армирующими наполнителями служат частицы тугоплавких оксидов, нитридов, боридов, карбидов.

Сплавы САП удовлетворительно деформируются, легко обрабатываются резанием, свариваются аргонодуговой и контактной сваркой. Из САП выпускают полуфабрикаты в виде листов, профилей, труб, фольги. Из них изготавливают лопатки компрессоров, вентиляторов и турбин, поршневые штоки.

В композиционных материалах с одномерными наполнителями упрочнителями являются одномерные элементы в форме нитевидных кристаллов, волокон, проволоки, которые скрепляются матрицей в единый монолит. Важно, чтобы прочные волокна были равномерно распределены в пластичной матрице. Для армирования композиционных материалов используют непрерывные дискретные волокна с размерами в поперечном сечении от долей до сотен микрометров.

Композиционные материалы этого типа перспективны как высокожаропрочные материалы. Для увеличения к.п.д. тепловых машин лопатки газовых турбин изготавливают из никелевых сплавов, армированных нитями сапфира (Al2O3), это позволяет значительно повысить температуру на входе в турбину (предел прочности сапфировых кристаллов при температуре 1680oС выше 700 МПа).

Эвтектические композиционные материалы – сплавы эвтектического или близкого к эвтектическому состава, в которых упрочняющей фазой выступают ориентированные кристаллы, образующиеся в процессе направленной кристаллизации. В отличие от обычных композиционных материалов, эвтектические получают за одну операцию. Направленная ориентированная структура может быть получена на уже готовых изделиях. Форма образующихся кристаллов может быть в виде волокон или пластин. Способами направленной кристаллизации получают композиционные материалы на основе алюминия, магния, меди, кобальта, титана, ниобия и других элементов, поэтому они используются в широком интервале температур

Полимерные композиционные материалы. Особенностью является то, что матрицу образуют различные полимеры, служащие связующими для арматуры, которая может быть в виде волокон, ткани, пленок, стеклотекстолита.




Случайные файлы

Файл
11357.rtf
102068.rtf
37904.doc
143348.rtf
26816.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.