Модели экономического роста (184554)

Посмотреть архив целиком

Понятие экономического роста

и факторы его определяющие.

Модели экономического роста

1. Понятие и факторы экономического роста.

Экономический рост можно рассматривать как долгосрочный аспект динамики совокупного предложения или, что более точно, потенциального объёма выпуска. Анализ его факторов и закономерностей является одним из централь­ных вопросов макроэкономической теории.

Под экономическим ростом обычно понимают увеличение реального дохода в экономике (ВНП, ВВП или НД), а также рост реального выпуска в расчете на душу населения (иногда выделяют и рост дохода в расчете на одного занятого. Этот показатель может отличаться от показателей роста дохода а расчете на душу населения, поскольку отражает уровень и динамику экономической активности населения.). Соот­ветственно, для измерения экономического роста используют­ся показатели абсолютного прироста или темпов прироста ре­ального объёма выпуска в целом или на душу населения.

На­пример:


ΔY=Yt-Yt-1 или yt=ΔYt/ Yt-1 , где t- индекс цен.


Экономический рост называется экстенсивным, если он осуществляется за счет привлечения дополнительных ресурсов и не меняет среднюю производительность труда в обществе. Интенсивный рост связан с применением более совершенных факторов производства и технологии, т.е. осуществляется не за счет увеличения объемов затрат ресурсов, а за счет роста их отдачи. Интенсивный рост может служить основой повыше­ния благосостояния населения. Обычно говорят о преимуще­ственно интенсивном или экстенсивном типе экономического роста в зависимости от удельного веса тех или иных факторов, вызвавших этот рост.

Факторы экономического роста часто группируют в соот­ветствии с типами экономического роста. К экстенсивным факторам относят рост затрат капитала, труда (в некоторых случаях выделяются земля или природные ресурсы, но считается, что для промышленно развитых стран они не являются особенно важными факторами экономического роста), к интенсив­ным технологический прогресс, экономию на масштабах, рост образовательного и профессионального уровня работни­ков, повышение мобильности и улучшение распределения ре­сурсов, совершенствование управления производством, соот­ветствующее улучшение законодательства и т.д., т.е. всё, что позволяет качественно усовершенствовать как сами факторы производства, так и процесс их использования. Иногда в виде самостоятельного фактора экономического роста выделяют совокупный спрос как главный катализатор процесса расши­рения производства.

В качестве причин, сдерживающих экономический рост, часто называют ресурсные и экологические ограничения, ши­рокий спектр социальных издержек, связанных с ростом про­изводства, а также неэффективную экономическую политику правительства.


2. Кейнсианские модели экономического роста

Рассмотрим основные современные модели экономического роста. Как и любые модели, модели роста представляют собой абстрактное, упрощенное выражение реального экономического процесса в форме уравнений или графиков. Целый ряд допуще­ний, предваряющих каждую модель, уже изначально отодвигает результат от реальных процессов, но, тем не менее, дает возмож­ность проанализировать отдельные стороны и закономерности такого сложного явления, как экономический рост.

Большинство моделей роста исходит из того, что увеличение реального объема выпуска происходит прежде всего под влияни­ем роста основных факторов производства труда (L) и капитала (К). Фактор "труд" обычно слабо поддаётся воздействию извне, тогда как величина капитала может быть скорректирована опре­деленной инвестиционной политикой. Как известно, запас капи­тала в экономике со временем сокращается на величину выбытия (амортизации) и увеличивается за счет роста чистых инвестиций. Вполне очевидно, что экономический рост ценен не сам по себе, а в качестве основы повышения благосостояния населения, по­этому качественная оценка роста часто дается через оценку ди­намики потребления.

Анализ со стороны спроса необходимо соединить с факторами, опреде­ляющими динамику предложения, и выяснить условия дина­мического равновесия спроса и предложения в экономике. Стратегической переменной, с помощью которой можно управлять экономическим ростом, являются инвестиции.

Наиболее простой кейнсианской моделью роста являет­ся модель Е.Домара, предложенная в конце 40-х годов. Технология производства представлена в ней производст­венной функцией Леонтьева с постоянной предельной про­изводительностью капитала (при условии, что труд не явля­ется дефицитным ресурсом). Модель Домара исходит из того, что на рынке труда существует избыточное предложе­ние, что обусловливает постоянство уровня цен. Выбытие капитала отсутствует, отношение К/У и норма сбережений - постоянны. Выпуск зависит фактически от одного ресур­са - капитала. Для простоты можно принять также инве­стиционный лаг равным нулю.

Фактором увеличения спроса и предложения в экономике служит прирост инвестиций. Если в данном периоде инвести­ции выросли на, то, и соответствии с эффектом мультипли­катора, совокупный спрос возрастет на ΔI , то в соответствии с эффектом мультипликатора, совокупный спрос возрастет на


ΔYAD=ΔIm=ΔI(l/l-b)=ΔI(l/S),

где

m- мультипликатор расходов,

b- предельная склонность к потреблению,

S -предельная склонность к сбережению.

Увеличение совокупного предложения составит ΔYAS=aΔK, где а - предельная производительность ка­питала (по условию - постоянна). Прирост капитала ΔK обес­печивается соответствующим объемом инвестиций I, потому можно записать: ΔYAS=aI.

Равновесный экономический рост будет достигнут при условии равенства спроса и предложения: ΔI/S= aI или ΔI/I= as т.е. темп прироста инвестиций должен быть равен произведению предельной производительности капитала и предельной склонности к сбережению. Величина "а" задается технологией производства и, в соответствии с принятыми предпосылками, постоянна, а значит увеличить темпы при­роста инвестиций может лишь рост нормы сбережений s (но для рассматриваемого периода она берется постоянной).

Поскольку в условиях равновесия инвестиции равны сбе­режениям, I=S, а S=sY при, s=const, уровень дохода является величиной, пропорциональной уровню инвестиций, и тогда ΔY/Y=ΔI/I=as.

Таким образом, согласно теории Е. Домара, существует равновесный темп прироста реального дохода в экономике, при котором полностью используются имеющиеся производствен­ные мощности. Он прямо пропорционален норме сбережений и предельной производительности капитала, или приростной капиталоотдаче, (ΔY/ΔK). Инвестиции и доход растут с одинаковым постоянным во времени темпом.

Такое динамическое равновесие может оказаться неустой­чивым, как только темп роста плановых инвестиций частного сектора отклоняется от уровня, заданного моделью.

Модель Е. Домара не претендовала на роль теории роста. Это была попытка расширить условия краткосрочного кейнсианского равновесия на более длительный период и выяс­нить, какими будут эти условия для развивающейся системы.

Р.Ф. Харрод построил специальную модель экономиче­ского роста (1939г.), включив в неё экзогенную функцию ин­вестиций (в отличие от экзогенно заданных инвестиций у Домара) на основе принципа акселератора и ожиданий предпри­нимателей (предпосылки модели Харрода остаются теми же, что и в модели Домара).

Согласно принципу акселератора, любой рост (сокращение) дохода вызывает рост (сокращение) капитало­вложений, пропорциональный изменению дохода:

It=v(Yt-Yt-1), где v акселератор.

Предприниматели планируют объем собственного произ­водства, исходя из ситуации, сложившейся в экономике в предшествующий период: если их прошлые прогнозы относи­тельно спроса оказались верными и спрос полностью уравно­весил предложение, то в данном периоде предприниматели оставят темпы роста объема выпуска неизменными; если спрос в экономике был выше предложения, они увеличат тем­пы расширения производства; если предложение превышало спрос в предшествующем периоде, они снизят темпы роста. Формализовать это можно следующим образом:



(Yt-Yt-1)/ Yt-1=а(Yt-1-Yt-2)/ Yt-2

где а=1, если спрос в предшествующем периоде (t-1) был ра­вен предложению; а>1, если спрос превысил предложение и а<1, если спрос был ниже предложения. Отсюда получим объ­ём предложения в экономике:



Yt=Yt-1 {а (Yt-1-Yt-2)/ Yt-2+1}.


Для определения совокупного спроса используется модель акселератора (а также условие равенства I=S):


Yt=It/s= v(Yt-Yt-1)/s.


Равновесный экономический рост предлагает равенство совокупного спроса и предложения:


v(Yt-Yt-1)/s= Yt-1{а (Yt-1-Yt-2)/ Yt-2+1}.

После небольшого преобразования получим:

v/s {(Yt-Yt-1) /(Yt-1)} =а{(Yt-1-Yt-2)/ Yt-2}+1.


Предположим, что в предшествующем периоде спрос был равен предложению, т.е. а=1. Тогда, в соответствии с приня­тыми условиями поведения, предприниматели и в текущем периоде сохранят темпы роста производства такими же, как и в предшествующем периоде, т.е.


(Yt-Yt-1) /Yt-1=(Yt-1-Yt-2)/ Yt-2=ΔYt/ Yt-1.

Тогда предыдущее выражение можно представить сле­дующим образом:


v/s (ΔYt/ Yt-1)= (ΔYt/ Yt-1) +1, отсюда равновесный темп прироста объёма выпуска составит: ΔY/ Yt-1=s/(v-s). Харрод назвал выражение s/(v-s) «гарантированным» темпом роста: поддерживая его, предприниматели будут полностью удовле­творены своими решениями, поскольку спрос будет равен предложению и их ожидания будут сбываться. Такой темп рос­та обеспечивает полное использование производственных мощностей (капитала), но полная занятость при этом не все­гда достигается.


Анализ соотношений между гарантированным и фактиче­ским темпами роста позволил сделать следующий вывод: если фактически запланированный предпринимателями темп роста предложения отличается от гарантированного темпа роста (превышает или не достигает его), то система постепенно от­даляется от состояния равновесия.

Помимо гарантированного темпа роста Харрод вводит по­нятие "естественного" темпа роста. Это максимальный темп, допускаемый ростом активного населения и техническим прогрессом.

При таком темпе достигается полная занятость факторов труда и капитала.

Если гарантированный темп роста, удовлетворяющий предпринимателей, выше естественного, то вследствие недостатка трудовых ресурсов фактический темп окажется ниже гарантированного: производители будут разочаровываться в своих ожиданиях, снизят объём выпуска и инвестиции, в результате чего система будет находиться в состоянии депрессии.

Если гарантированный темп роста меньше естественного, то фактический темп может превысить гарантированный, поскольку существующий избыток трудовых ресурсов даёт возможность увеличить инвестиции. Экономическая система будет переживать бум. Фактический темп роста может быть также равен гарантированному, и тогда экономика будет развиваться в условиях динамического равновесия, вполне удовлетворяющих предпринимателей, но при наличии вынужденной безработицы.

Идеальное развитие экономической системы достигается при равенстве гарантированного, естественного и фактического темпов роста в условиях полной занятости ресурсов.

Но поскольку всякое отклонение инвестиций от условий гарантированного темпа роста, как известно, выводит систему из равновесия и сопровождается все более увеличивающимся расхождением между спросом и предложением, динамическое равновесие в модели Харрода также оказывается неустойчивым.

Часто обе модели объединяют в одну модель Харродаомара. Обе модели приводят к выводу, что при данных технических условиях производства темп экономического роста определяется величиной предельной склонности к сбережению, а динамическое равновесие может существовать в условиях неполной занятости.

Ограниченность данных моделей задана уже предпосылками их анализа. Например, используемая в них производственная функция Леонтьева характеризуется отсутствием взаимозаменяемости факторов производства - труда и капитала, что в современных условиях не всегда соответствует действительности.

Модели Домара и Харрода неплохо описывали реальные процессы экономического роста 1920-1950-х гг., но для более поздних наблюдений (50-е - 70-е гг.) наиболее успешно использовалась неоклассическая модель Р. Солоу.


3. Неоклассическая модель роста Р. Солоу

Неоклассические модели роста преодолевали ряд ограни­чений кейнсианских моделей и позволяли более точно описать особенности макроэкономических процессов. Р.Солоу показал, что нестабильность динамического рав­новесия в кейнсианских моделях была следствием невзаимозаменяемости факторов производства. Вместо функции Леонтьева он использовал в своей модели производственную функ­цию Кобба—Дугласа, в которой труд и капитал являются суб­ститутами. Другими предпосылками анализа в модели Солоу являются: убывающая предельная производительность капита­ла, постоянная отдача от масштаба, постоянная норма выбы­тия, отсутствие инвестиционных лагов.

Взаимозаменяемость факторов (изменение капиталово­оруженности) объясняется не только технологическими усло­виями, но и неоклассической предпосылкой о совершенной конкуренции на рынках факторов.

Необходимым условием равновесия экономической сис­темы является равенство совокупного спроса и предложения. Предложение описывается производственной функцией с по­стоянной отдачей от масштаба: Y=F(K,L) и для любого поло­жительного z верно: zF(K,L)= F(zK, zL). Тогда если z=1/L, тоY/L=F(K/L,1). Обозначим (Y/L) через у, а (K/L) через к и перепишем исходную функцию в форме взаимосвязи между производительностью и фондовооруженностью (капиталовооруженностью): у=ƒ(k) (см. рис. 1). Тангенс утла наклона данной производственной функции соответствует предельному продукту капитала (МРК), который убывает по мере роста фондовооруженности (k).












Рис.1


Совокупный спрос в модели Солоу определяется инвестициями и потреблением: у=i, где i и с - инвестиции и потребление в расчете на одного занятого. Доход делится между потреблением и сбережениями в соответствии с нормой сбережения, так что потребление можно представить как с=(1-s)y, где s -норма сбережения (накопления), тогда у=с+i=(1-s)y+i,

откуда i=sy. В условиях равновесия инвестиции равны сбережениям и пропорциональны доходу.

Условия равенства спроса и предложения могут быть представлены как ƒ(k)= с+i или ƒ(k)= i/s. Производственная функция определяет предложение на рынке товаров, а накопление капитала - спрос на произведенный продукт.

Динамика объёма выпуска зависит от объёма капитала (в нашем случае- капитала в расчете на одного занятого, или капиталовооруженности). Объём капитала меняется под воздействием инвестиций и выбытия: инвестиции увеличивают запас капитала, выбытие - уменьшает.

Инвестиции зависят от фондовооруженности и нормы накопления, что следует из условия равенства спроса и предложения в экономике: i=sƒ(k). Норма накопления определяет деление продукта на инвестиции и потребление при любом значении k (рис. 1): у=ƒ(k), i=sƒ(k), с=(1-s)ƒ(k).

Амортизация учитывается следующим образом: если при­ять, что ежегодно вследствие износа капитала выбывает его фиксированная часть d (норма выбытия), то величина выбытия будет пропорциональна объёму капитала и равна dk. На графике эта связь отражается прямой, выходящей из точки начала координат, с угловым коэффициентом d (рис. 2).

Влияние инвестиций и выбытия на динамику запасов капитала можно представить уравнением: Δk=i-dk, или, используя равенство инвестиций и сбережений, Δk=sƒ(k)-dk. Запас капитала (k) будет увеличиваться (Δk>0) до уровня, при котором инвестиции будут равны величине выбытия, т.е. sƒ(k)=dk. После этого запас капитала на одного занятого (фондовооруженность) не будет меняться во времени, поскольку две действующие на него силы уравновесят друг друга (Δk=0). Уровень запаса капитала, при котором инвестиции равны выбытию, называется равновесным (устойчивым) уровнем фондовооруженности труда и обозначается k*. При достижении k* экономика находится в состоянии долгосрочного равновесия.

Рис.2



Равновесие является устойчивым, поскольку независимо от исходного значения к экономика будет стремиться к равно­весному состоянию, т.е. к k*. Если начальное k1 ниже k*, то валовые инвестиции (sƒ(k) будут больше выбытия (dk) и запас капитала будет возрастать на величину чистых инвестиций. Если k2>k*, это означает, что инвестиции меньше, чем износ, а значит запас капитала будет сокращаться, приближаясь к уровню k* (см. рис. 2).

Норма накопления (сбережения) непосредственно влияет на устойчивый уровень фондовооруженности. Рост нормы сбережения с s1 до s2 сдвигает кривую инвестиций вверх из положения s1ƒ(k) до s2(k) (см. рис. 3).

Рис.3



В исходном состоянии экономика имела устойчивый запас ка­тала k1*, при котором инвестиции равнялись выбытию. После повышения нормы сбережения инвестиции выросли на(i1-i1) , а запас капитала (k1*) и выбытие (dk1) остались прежними. В этих условиях инвестиции начинают превышать выбытие, что вызывает рост запаса капитала до уровня нового равновесия k2*, которое характеризуется более высокими зна­ниями фондовооруженности и производительности труда (выпуск на одного занятого, у).

Таким образом, чем выше норма сбережения (накопления), тем более высокий уровень выпуска и запаса капитала может быть достигнут в состоянии устойчивого равновесия. Однако повышение нормы накопления ведёт к ускорению экономического роста в краткосрочном периоде, до тех пор, пока экономика не достигнет точки нового устойчивого равновесия.

Очевидно, что ни сам процесс накопления, ни увеличение нормы сбережения не могут объяснить механизм непрерывного экономического роста. Они показывают лишь переход от одного состояния равновесия к другому.

Для дальнейшего развития модели Солоу поочередно снимаются две предпосылки: неизменность численности населения и его занятой части (их динамика предполагается одинаковой) и отсутствие технического прогресса.

Предположим, население растёт с постоянным темпом n. Это новый фактор, влияющий вместе с инвестициями и выбытием на фондовооруженность. Теперь уравнение, показывающее изменение запаса капитала на одного работника, будет выглядеть как:k=i-dk-nk или k=i-(d+n)k.

Рост населения аналогично выбытию снижает фондовооруженность, хотя и по-другому - не через уменьшение наличного запаса капитала, а путем распределения его между возросшим числом занятых. В данных условиях необходим такой объем инвестиций, который не только бы покрыл выбытие капитала, но и позволил бы обеспечить капиталом новых рабочих в прежнем объёме. Произведение nk показывает, сколько требуется дополнительного капитала в расчете на одного занятого, чтобы капиталовооруженность новых рабочих была на том же уровне, что и старых.







Рис. 4 Рис. 5


k k′* k′

(капитал на эффективную единицу труда)


Условие устойчивого равновесия в экономике при неиз­менной фондовооруженности k* можно будет записать теперь так:

k=sƒ(k)-(d+n)k=0 или sƒ(k)=(d+n)k

Данное состояние характеризуется полной занятостью ре­сурсов (рис.4).

В устойчивом состоянии экономики капитал и выпуск на одного занятого, т.е. фондовооруженность (k) и производи­тельность (у) труда остаются неизменными. Но, чтобы фондо­вооруженность оставалась постоянной и при росте населения, капитал должен возрастать с тем же темпом, что и население, т.е.:

Y/Y=∆L/L=∆K/K=n.

Таким образом, рост населения становится одной из причин непрерывного экономического роста в условиях равновесия.

Отметим, что с увеличением темпа роста населения возрастает угловой коэффициент кривой (d+n)k , что приводит к уменьшению равновесного уровня фондовооруженности (k′*), следовательно, к падению у.

Учет в модели Солоу технологического прогресса видоизменяет исходную производственную функцию. Предполагается трудосберегающая форма технологического прогресса, Производственная функция будет представлена как Y=F(K,LE), где E- эффективность труда, а LE - численность условных единиц труда с постоянной эффективностью Е. Чем выше Е, тем больше продукции может быть произведено данным числом работников. Предлагается, что технологический прогресс осуществляется путем роста эффективности труда Е с постоянным темпом g. Рост эффективности труда в данном случае аналогичен по результатам росту численности занятых: если технологический прогресс имеет темп g=2%, то, например, 100 рабочих могут произвести столько же продукции, сколько ра­нее производили 102 рабочих. Если теперь численность заня­тых (L) растет с темпом n, а Е растет с темпом g, то (LЕ) бу­дет увеличиваться с темпом (n+g).

Включение технологического прогресса несколько меняет и анализ состояния устойчивого равновесия, хотя ход рассуж­дений сохраняется. Если определить k' как количество капита­ла в расчете на единицу труда с постоянной эффективностью, т.е. k'=K/LE, а y'=Y/LE, то результаты роста эффективных единиц труда аналогичны росту численности занятых (увеличение количества единиц труда с постоянной эффектив­ностью снижает величину капитала, приходящегося на одну такую единицу). В состоянии устойчивого равновесия (рис. 5) уровень фондовооруженности k'* уравновешивает, с од­ной стороны, влияние инвестиций, повышающих фондовооруженность, а, с другой стороны, воздействие выбытия, роста числа занятых и технологического прогресса, снижающих уро­вень капитала в расчете на эффективную единицу труда: sƒ(k′)=(d+n+g)k′.

В устойчивом состоянии (k′*) при наличии технологиче­ского прогресса общий объём капитала (К) и выпуска (У), бу­дут расти с темпом (n+g). Но в отличие от случая роста насе­ления, теперь будут расти с темпом g фондовооруженность (K/L) и выпуск (Y/L) в расчете на одного занятого; последнее может служить основой для повышения благосостояния насе­ления. Технологический прогресс в модели Солоу является, следовательно, единственным условием непрерывного роста уровня жизни, поскольку лишь при его наличии наблюдается устойчивый рост выпуска на душу населения (у).

Характеристика основных переменных модели Солоу в состоянии устойчивого равновесия

При отсутствии роста населения и технологического прогресса

При росте населения с темпом n

При росте населения с темпом n и технологическом прогрессе с темпом g

Переменная

Темп роста

Переменная

Темп роста

Переменная

Темп роста

L

0

L

n

L

N





LE

n+g

K

0

K

n

K

n+g





k′=K/LE

0

k=K/L

0

k=K/L

0

k=K/L

G

Y

0

Y

n

Y

n+g





y′=Y/LE

0

y=Y/L

0

y=Y/L

0

y=Y/L

g


Таким образом в модели Солоу найдено объяснение меха­низма непрерывного экономического роста в режиме равнове­сия при полной занятости ресурсов.

Как известно, в кейнсианских моделях норма сбережения задавалась экзогенно и определяла величину равновесного темпа роста дохода. В неоклассической модели Солоу при лю­бой норме сбережения рыночная экономика стремится к соот­ветствующему устойчивому уровню фондовооруженности (k*) и сбалансированному росту, когда доход и капитал растут с темпом (n+g). Величина нормы сбережения (накопления) яв­ляется объектом экономической политики и важна при оценке различных программ экономического роста.

Поскольку равновесный экономический рост совместим с различными нормами сбережения (как мы видели, увеличение s лишь на короткое время ускоряло рост экономики, в дли­тельном периоде экономика возвращалась к устойчивому рав­новесию и постоянному темпу роста в зависимости от значе­ния n и g), возникает проблема выбора оптимальной нормы сбережения.

Оптимальная норма накопления, соответствующая "золотому правилу" Э. Фелпса, обеспечивает равновесный эко­номический рост с максимальным уровнем потребления. Ус­тойчивый уровень фондовооруженности, соответствующий этой норме накопления, обозначим k**, а потребления - с**.

Уровень потребления в расчете на одного занятого при любом устойчивом значении фондовооруженности k* опреде­ляется путем ряда преобразований исходного тождества: у=с+i. Выражаем потребление с через у и i и подставляем значения данных параметров, которые они принимают в устойчивом состоянии: с=у-i, с*=ƒ(k*)-dk*, где с* - потребление в состоя­нии устойчивого роста, а i=sƒ(k)=dk по определению устойчи­вого уровня фондовооруженности. Теперь из различных устой­чивых уровней фондовооруженности (k*), соответствующих разным значениям s, необходимо выбрать такой, при кото­ром потребление достигает максимума (рис. 6).



Рис.6









Если выбрано k* то объём выпуска увеличивается в большей степени, чем величина выбытия (линия ƒ(k*) на гра­фике круче, чем dk*), а значит разница между ними, равная потреблению, растет. При k*>k** увеличение объема выпуска меньше роста выбытия, т.е. потребление падает. Рост потреб­ления возможен лишь до точки k**, где оно достигает макси­мума (производственная функция и кривая dk* имеют здесь одинаковый наклон). В этой точке увеличение запаса капитала на единицу даст прирост выпуска, равный предельному про­дукту капитала (МРК), и увеличит выбытие на величину d (износ на единицу капитала). Роста потребления не будет, ес­ли весь прирост выпуска будет использован на увеличение ин­вестиций для покрытия выбытия. Таким образом, при уровне фондовооруженности, соответствующем "золотому правилу" (k**), должно выполняться условие: МРК=d (предельный про­дукт капитала равен норме выбытия), а с учетом роста насе­ления и технологического прогресса: МРК=d+n+g.

Если экономика в исходном состоянии имеет запас капи­тала больший, чем следует по "золотому правилу", необходима программа по снижению нормы накопления. Эта программа обусловливает увеличение потребления и снижение инвести­ций. При этом экономика выходит из состояния равновесия и вновь достигает его при пропорциях, соответствующих "золотому правилу".

Если экономика в исходном состоянии имеет запас капи­тала меньше, чем k**, необходима программа, направленная на повышение нормы сбережения. Эта программа первона­чально приводит к росту инвестиций и падению потребления, но по мере накопления капитала с определенного момента потребление вновь начинает расти. В результате экономика достигает нового равновесия, но уже в соответствии с "золотым правилом", где потребление превышает исходный уровень. Данная программа обычно считается непопулярной в связи с наличием "переходного периода", характеризующегося падением потребления, поэтому её принятие зависит от межвременных предпочтений политиков, их ориентации на крат­косрочный или долгосрочный результат.

Рассмотренная модель Солоу позволяет описать механизм долгосрочного экономического роста, сохраняющий равновесие в экономике и полную занятость факторов. Она выделяет технический прогресс как единственную основу устойчивого роста благосостояния и позволяет найти оптимальный вариант роста, обеспечивающий максимум потребления.

Представленная модель не свободна и от недостатков. Модель анализирует состояния устойчивого равновесия, дос­тигаемые в длительной перспективе, тогда как для экономиче­ской политики важна и краткосрочная динамика производства и уровня жизни. Многие экзогенные переменные модели Солоу - s, d, n, g - было бы предпочтительнее определять внутри модели, поскольку они тесно связаны с другими ее парамет­рами и могут видоизменять конечный результат. Модель не включает также целый ряд ограничителей роста, существенных в современных условиях - ресурсных, экологических, соци­альных. Используемая в модели функция Кобба—Дугласа, опи­сывая лишь определенный тип взаимодействия факторов про­изводства, не всегда отражает реальную ситуацию в экономи­ке. Эти и другие недостатки пытаются преодолеть современ­ные теории экономического роста.

В неоклассической модели роста объём выпуска в устой­чивом состоянии растет с темпом (n+g), а выпуск на душу на­селения с темпом g, т.е. устойчивый темп роста определяет­ся экзогенно. Современные теории эндогенного роста пытаются определить устойчивый темп роста в рамках модели, эндоген­но, связывая его со всеми возможными количественными и качественными факторами: ресурсными, институциональными и др.

Сторонники концепции "экономики предложения" полага­ют, что увеличение темпов роста при полной занятости воз­можно прежде всего путём сокращения регулирующего вмеша­тельства извне в рыночную систему.



Денежная политика: цели и инструменты



Случайные файлы

Файл
122404.doc
25137.rtf
ref-18686.doc
10504-1.rtf
11067.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.