Задание 121С

Сталь 40ХН2МА идёт на изготовление коленчатых валов, шатунов, шестерен, ответственных болтов и других нагруженных деталей сложной конфигурации.

  1. Укажите оптимальный режим термической обработки вала, диаметром 40 мм из стали 40ХН2МА. Постройте график термообработки в координатах температура-время.

  2. Опишите структурные превращения, происходящие при термической обработке этой стали.

  3. Приведите основные сведения об этой стали: ГОСТ, хим. состав, свойства, требования, предъявляемые к улучшенным сталям, инструменту, влияние легирующих элементов на прокаливаемость и вязкость стали , достоинства, недостатки и т.д.



























Термообработка

Сталь 40ХН2МА – среднеуглеродистая легированная доэвтектоидная сталь.

Нагрев закаленных сталей до температур, не превышающих А1, называют отпуском. Комплексную термическую обработку состоящую из полной закалки( сталь нагревают до температуры выше А3) и высокого отпуска

(500-680 °С) конструкционных сталей называют улучшением. Улучшение этой стали в отличие от нормализации обеспечивает повышенный предел текучести в сочетании с хорошей пластичностью и вязкостью, высоким сопротивлением развитию трещин. Кроме того, снижается порог хладноломкости.

Для данной стали оптимальным режимом термической обработки является закалка при 850С. Закаливание производят в воду, с последующим отпуском при 620С в масле.




t

А 850 оС А

Ас3 (820 оС)

Ас1 (730 оС)


вода

620 оС

Мн

Высокий

отпуск


Ф+П М Сотп




Рис. 1. Режим термообработки стали 40ХН2МА




Структурные изменения

Комплексную термическую обработку состоящую из полной закалки и высокого отпуска конструкционных сталей называют улучшением.

Сталь 40ХН2МА относится к сталям перлитного класса. Для нее характерны два критических температурных перехода: Ас1 = 730˚С и Ас3 = 820˚С. Доэвтектоидная сталь, как правило, подвергают полной закалке, при этом оптимальной температурой нагрева является температура Ас3 + ( 30-50˚С ). Такая температура обеспечивает получение при нагреве мелкозернистого аустенита и соответственно после охлаждения – мелкозернистого мартенсита. Зерна аустенита образуются на границе фаз феррита и цементита. При этом помимо растворения цементита в аустените происходит еще и аллотропное модифицирование раствора железа α в раствор железа γ. Поскольку процесс растворения цементита происходит медленнее, нежели образование аустенитных кристаллов, то по достижению закалочных температур необходима некоторая выдержка.

При дальнейшем охлаждении в воде, благодаря очень высокой скорости охлаждения (превышающей Vкр) происходит образование структуры мелкозернистого мартенсита. Это не что иное, как пересыщенный твердый раствор углерода в железе α.

Поскольку мартенсит представляет собой очень твердую структуру, то как правило на поверхности закаленной детали образуются очень сильные остаточные напряжения. Это может привести к образованию трещин, сколов и прочих хрупких разрушений. Во избежании этого после закалки проводят процедуру отпуска. Именно после закалки и отпуска при 450-650˚С. Исходная структура–мартенсит закалки, температура отпуска

tотп = 450–650°C. При повышении температуры активизируется диффузия. Диффузия углерода при такой температуре достаточна для превращения мартенсита в перлитную структуру, но не достаточна для перемещения углерода на большие расстояния. В итоге образуется смесь феррита и цементита.



3 этапа отпуска:

1) Из мартенсита выделяется часть углерода в виде метастабильного ε-карбида. Первое превращение идет с очень маленькой скоростью и без нагрева.

2) Продолжается распад мартенсита, распадается остаточный аустенит и начинается карбидное превращение. Распад мартенсита распространяется на весь объем. Начинается превращение ε-карбида в цементит.

3) Завершаются распад мартенсита и карбидное превращение. Мартенсит переходит в феррит. Далее при дальнейшем нагреве ферритно-карбидная смесь меняет форму, размер карбидов и структуру феррита. Диффузия происходит интенсивнее, чем в случае среднетемпературного отпуска, атомы углерода смещаются на большее расстояние, увеличиваются размеры кристаллов феррита и цементита. Такая структура называется сорбит отпуска.

Продолжительность выдержки при отпуске устанавливают таким расчетом, чтобы обеспечить стабильность свойств стали. Продолжительность среднего и высокого отпуска обычно составляет 1-2 часа для деталей небольшого сечения.





Основные сведения о стали.

Заменитель

стали: 40ХГТ, 40ХГР, 30Х3МФ, 45ХН2МФА.

Вид поставки

Сотовой прокат, в том числе фасонный: ГОСТ 4543-71, ГОСТ 2590-71, ГОСТ 2591-71, ГОСТ 2879-69, ГОСТ 10702-78. Калиброванный пруток ГОСТ 7417-75, ГОСТ 8559-75, ГОСТ 8560-78, ГОСТ 1051-73, ГОСТ 10702-78. Шлифованный пруток и серебрянка ГОСТ 14955-77. Полоса ГОСТ 103-76. Поковки и кованые заготовки ГОСТ 1133-71, ГОСТ 8479-70. Валки ОСТ 24.013.04.-83, ОСТ 24.013.20-85.

Назначение

Коленчатые валы, клапаны, шатуны, крышки шатунов, ответственные болты, шестерни, кулачковые муфты, диски и другие тяжелонагруженные детали. Валки для холодной прокатки металлов.


Химический состав.

Химический элемент

%

Кремний (Si)

0.17-0.37

Марганец (Mn)

0.50-0.80

Медь (Cu), не более

0.30

Молибден (Mo)

0.15-0.25

Никель (Ni)

1.25-1.65

Сера (S), не более

0.025

Углерод (C)

0.37-0.44

Фосфор (P), не более

0.025

Хром (Cr)

0.60-0.90





Механические свойства

Термообработка, состояние поставки

Сечение, мм

0,2, МПа

B, МПа

5, %

, %

KCU, Дж/м2

HRCэ


Пруток. Закалка 850 °С, масло. Отпуск 620 °С [160]


Место вырезки образца - центр 

40  

880  

1030  

14  

57  

118  

33  









Технологические свойства.

Температура ковки

Начала 1220, конца 800. Сечения до 80 мм - отжиг с перекристаллизацией, два переохлаждения, отпуск.

Свариваемость

трудносвариваемая. Способ сварки: РДС. Необходим подогрев и последующая термообработка.

Обрабатываемость резанием

В горячекатаном состоянии при НВ 228-235 B = 560 МПа K тв.спл. = 0.7, K б.ст. = 0.4.

Склонность к отпускной способности

не склонна

Флокеночувствительность

чувствительна

Повышенное содержание водорода при выплавке стали может приводить к флокенам. Флокенами называют внутренние надрывы, образующиеся в результате высоких давлений, которые развивает водород, выделяющийся при охлаждении в поры вследствие понижения растворимости. Флокены в изломе имеют вид белых пятен, а на поверхности – мелких трещин



Температура критических точек.

Критическая точка

°С

Ac1

730

Ac3

820

Ar3

550

Ar1

380

Mn

320

Прокаливаемость.

Закалка 840 С.

Расстояние от торца, мм / HRCэ

 1.5

 3

 6

 9

 12

 15

 21

 27

 33

 42



 49-59.5

 40.5-60

 50-60

 50-59.5

 49-59

 48-58

 45-56

 41.5-53

 41-50.5

 36.5-48.5








Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.