Методы экспериментальной экономики (183836)

Посмотреть архив целиком

МЕТОДЫ ЭКСПЕРИМЕНТАЛЬНОЙ ЭКОНОМИКИ


Одной из основных тенденций развития современного общества является ускорение темпов компьютеризации и информатизации. Влияние этой тенденции на экономическую науку и на внедрение ее результатов в практику функционирования экономических объектов не ограничивается лишь увеличением числа компьютеров на рабочих местах и ускорением процесса обработки документов. Это влияние носит глобальный характер – внутри экономической науки сформировались новые направления, суть которых складывается в объединении современной экономической теории с последними достижениями в области компьютеризации и информатизации.

Современная экономика, и в частности экономика Украины, характеризуется трансформационными процессами. Экономические системы эволюционируют во времени, в них происходят структурные изменения, поэтому применение статистических и аналитических методов моделирования затруднено, а в ряде случаев просто не возможно. Важную роль играет также многоагентность экономических систем: при моделировании необходимо учитывать множество различных факторов, отражающих как свойства элементов системы, так и взаимоотношения между ними. Под экономическими системами в настоящей работе подразумеваются сложные целенаправленные управляемые динамические системы, осущест-вляющие производство, распределение и потребление материальных благ [1]. Сложность экономических систем обусловлена наличием в них активных элементов, каждый из которых обладает способностью к целеполаганию и рефлексии [2].

До сих пор экономика рассматривается как достаточно инертная отрасль, в которой эксперименты могут проводиться в очень ограниченных масштабах, так как существенно влияют на состояние экономических систем, ухудшая на начальных этапах показатели их функционирования. Альтернативой экспериментам с реальными экономическими системами является проведение экспериментов с моделью системы. Теория проведения таких экспериментов разрабатывается в рамках нового направления математического моделирования в экономике - экспериментальной экономики.

В начале 90-х годов 20 столетия появились работы [3,4], в которых обосновывались методические основы этого нового направления в математическом моделировании экономики. За последние 20 лет это направление прошло путь от отдельных имитационных моделей учебного назначения к серьезному инструменту исследования динамики сложных экономических систем, который позволяет как анализировать их динамику, так и получать прогнозы поведения сложных экономических систем и процессов.

Макаров В.Л. в своем выступлении, посвященном перспективам развития математического моделирования экономики, сказал: «Использование компьютерных технологий привело в сфере экономики к эволюции моделирования. Сегодня можно говорить о триаде моделей. Во-первых, на основании теоретических представлений, гипотез или эмпирических наблюдений строится простая, но способная совершенствоваться и усложняться математическая модель. Она превращается в компьютерную модель, на которой уже можно проводить эксперименты, выявляя какие-то новые или опровергая принятые ранее связи и закономерности. Из этой модели-прототипа вырастает реальная модель, имитирующая действительность» [5].

При этом академик Макаров очень точно подметил замечательную особенность исследований с использованием методов экспериментальной экономики, состоящую в том, что исследователь задает начальное состояние, правила порождения и эволюции объектов, проводит компьютерный эксперимент, результаты которого позволяют получать новую информацию о системе. То есть компьютерные модели не только отражают основные свойства экономических систем и объектов, но и служат инструментом их познания. Высокая оценка этой роли экспериментальной экономики отразилась в решении Нобелевского комитета: премия в области экономики за 2002 год была присуждена американскому экономисту В. Смиту за «превращение исследовательских лабораторных экспериментов в инструмент эмпирического экономического анализа, особенно в изучении альтернативных рыночных механизмов»[6].

Для успешного внедрения методов экспериментальной экономики в практику экономических исследований необходимо дать ответы на следующие вопросы:

- в каких ситуациях возникает необходимость применения методов экспериментальной экономики,

- каковы основные этапы экономического эксперимента, и какие задачи решаются на каждом этапе,

- как методы экспериментальной экономики связаны с остальными методами математического моделирования, например, аналитическими или статистическими.

Основной проблемой моделирования сложных экономических систем является получение достоверной исходной информации о процессе ее функционирования, так как высок уровень неопределенности, связанной с моделируемой системой. В таких ситуациях особенно привлекательны методы экспериментальной экономики. При этом для преодоления неопределенности выдвигаются гипотезы о свойствах элементов системы или о параметрах связей между ними, которые затем проверяются в ходе компьютерных экспериментов. Дополнительная информация, полученная в ходе эксперимента, позволяет уточнить первоначальные гипотезы. Таким образом, последовательное проведение компьютерных экспериментов представляет собой итерационный процесс, на каждом шаге которого происходит уменьшение неопределенности, связанной с процессом функционирования системы.

Рассмотрим основные этапы проведения эксперимента, предлагаемые экспериментальной экономикой для исследования динамики сложных экономических систем [7, 8].

Этап 1. Содержательный анализ той системы или процесса, динамика которого будет исследоваться путем проведения компьютерного эксперимента, позволяет выбрать соответствующий раздел экономической теории, на основе положений которого строится спецификация модели. При этом для макроэкономических систем, как правило, модель строится в виде системы итерационных уравнений, а для микроэкономических систем, характерной особенностью которых является многоагентность, применяются модели в форме клеточных автоматов или клеточных сетей. Для спецификации модели в форме клеточной сети необходимо задать множество объектов с присущими им свойствами, множество состояний, в которых могут находиться объекты и множество правил перехода из одного состояния в другое.

Этап 2. Для исследуемой экономической системы разрабатывается имитационная модель, реализующая модель, построенную на этапе 1. Эта модель представляет собой интерактивную программу, своеобразный экономический "тренажер". Имитационная модель включает в себя описание множества объектов – элементов экономической системы, множества их возможных состояний и правил перехода из одного состояния в другое, реализующих взаимодействие объектов между собой и со средой, внешней по отношению к экономической системе. При этом если для некоторых объектов экономической системы правила поведения неизвестны, то в имитационную модель может включаться лицо, принимающее решения (ЛПР), которое в режиме диалога с имитационной моделью будет вводить значения переменных, характеризующих состояние объекта, и которые определены либо экспертным путем, либо на основании собственного опыта (собственной интуиции). Таким образом, происходит объединение формальных возможностей компьютерной системы: быстро и точно считать, с неформальными возможностями ЛПР: ассоциативностью, рефлективностью, интуицией и т.п. [9].

Эксперимент с участием ЛПР называется активным, в отличие от чисто имитационного эксперимента. Особенностью активного эксперимента для многоагентных экономических систем является необходимость создания сетевого тренажера, что обеспечит одновременное участие в эксперименте группы ЛПР (аналог производственных совещаний или переговоров).

Этап 3. На этом этапе проводится эксперимент с участием ЛПР, во время которого ему предъявляется ситуация, в которой должно быть принято решение. Результаты этого решения приводят к изменению состояния модельной системы. Качество решения оценивается, и оценка доводится до ЛПР, его цель - как можно быстрее научиться управлять системой оптимально. При многократном проведении таких экспериментов появляется возможность собрать данные для построения системы решающих правил ЛПР.

Этап 4. На этом этапе происходит спецификация решающих правил и оценка их параметров. Построенные решающие правила включаются в модель, и она становится автономной от ЛПР.

Этап 5. Проводится компьютерный эксперимент с автономной моделью, позволяющий получить временные ряды поведения экономической системы при различных начальных состояниях. Далее эти временные ряды исследуются различными методами: статистическими либо методами нелинейной динамики (теории хаоса) с целью выявления основных закономерностей зависимости поведения экономической системы от параметров модели. В процессе исследования выясняется, существуют ли интервалы значений параметров модели, при которых она проявляет устойчивое равновесное поведение, либо порождает хаотический динамический процесс. Результатом анализа является заключение о том, существует ли интервал значений параметров, при которых поведение исследуемой экономической системы хаотично, и если да, то насколько близок этот интервал к тем значениям параметров, которые реализуются в действительности. Основной целью такого анализа является подготовка информации для поддержки принятия решений: если известны интервалы значений параметров, при которых система проявляет равновесное или хаотическое поведение, то эту информацию можно использовать при принятии решений для управления системой.

Этап 6. Построенная имитационная модель может использоваться в целях повышения эффективности управления исследуемой экономической системой путем получения прогноза ее поведения, а также для поддержки принятия решений в режиме реального времени.






Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.