Моделирование работы двух кассиров в банке (183529)

Посмотреть архив целиком

Международный университет природы, общества и человека «Дубна»





Кафедра системного анализа и управления






Курсовая работа



по моделированию экономических процессов и систем


на тему:

Моделирование работы двух кассиров в банке





Руководитель: Тятюшкина О.Ю


Выполнила:

« » 2004 г. Распопова Т. А.

Проверила:

« » " 2004 г. Тятюшкина О.Ю.



Оглавление


Введение 3

Постановка задачи 3

Теоретическая часть 4

Логико-математическое описание модели 8

Выбор средств моделирования 9

Анализ работы модели 9

Заключение 10

Приложение 1



Введение


В современном мире мы повсюду сталкиваемся с системами массового обслуживания. Это могут быть билетные кассы, станки на производстве или даже экзамены. Как часто прибегая в кассу мы слышали, что рабочий день уже окончен, хотя на часах есть еще пять минут. Обидно, но интересно узнать, почему это происходит. Неужели только из-за нерадивости работников! И как определить руководителю предприятия, сколько станков нужно, чтобы справиться с работой, при минимуме простоев? Это и есть задача имитационного моделирования СМО.

Цели проведения имитационных экспериментов могут быть самыми различными - от выявления свойств и закономерностей исследуемой системы, до решения конкретных практических задач. С развитием средств вычислительной техники и программного обеспечения, спектр применения имитации существенно расширился в сфере экономики. В настоящее время ее используют как для решения задач внутрифирменного управления, так и для моделирования управления на макроэкономическом уровне.

Работа двух кассиров в банке - типичная задача имитационного моделирования, поэтому я и решила ее исследовать.

Постановка задачи

Цель. Необходимо на основе заданных параметров построить и проанализировать модель, имитирующую работу двух кассиров в банке.

Представление о модели. Имеются два кассира. Для каждого из них задано время обслуживания одного клиента. Также задано максимальное количество входящих в единицу времени людей в банк и длина рабочего дня, в течение которого кассиры обслуживают приходящих людей.

Исходные данные. ИД являются значения входных параметров (время обслуживания одного клиента каждым кассиром, максимальное количество входящих в единицу времени людей в банк и длина рабочего дня), которые по желанию можно менять.

Результат. Результатом работы модели должны быть величины, характеризующие количество обслуженных людей каждым из кассиров, а также графики, отражающие состояние кассиров и очередей к их кассам в каждый момент времени в течение рабочего дня.

Критерий оценки результата. Модель должна правдоподобно отражать события реального мира, т.е. работу двух кассиров в банке.

Теоретическая часть


В общем случае, под имитацией (simulation) понимают процесс проведения на ЭВМ экспериментов с математическими моделями сложных систем реального мира.

Целью имитационного моделирования является конструирование ИМ объекта и проведение имитационного эксперимента (ИЭ) над ним для изучения закона функционирования и поведения с учетом заданных ограничений и целевых функций в условиях имитации и взаимодействия с внешней средой.

В общем случае, проведение ИЭ можно разбить на следующие этапы.

  1. Установить взаимосвязи между исходными и выходными показателями в виде математического уравнения или неравенства.

  2. Задать законы распределения вероятностей для ключевых параметров модели.

  3. Провести компьютерную имитацию значений ключевых параметров модели.

  4. Рассчитать основные характеристики распределений исходных и выходных показателей.

5. Провести анализ полученных результатов и принять решение.

Результаты имитационного эксперимента могут быть дополнены статистическим анализом, а также использоваться для построения прогнозных моделей и сценариев.


Принципы и методы построения имитационных моделей.


Процесс функционирования сложной системы можно рассматривать как смену ее состояний, описываемых ее фазовыми переменными Zx(t), Z2(f),... Z„(t) в n-мерном пространстве.

Задачей имитационного моделирования является получение траектории движения рассматриваемой системы в и-мерном пространстве (Zb Z2, ... Z„), а также вычисление некоторых показателей, зависящих от выходных сигналов системы и характеризующих ее свойства.

В данном случае сдвижение» системы понимается в общем смысле - как любое изменение, происходящее в ней.

Известны два принципа построения модели процесса функционирования систем:

1. Принцип At. Рассмотрим этот принцип сначала для детерминированных систем. Предположим, что начальное состояние системы соответствует значениям Zi(t0), Z2(to), ... Z„(t0). Принцип At предполагает преобразование модели системы к такому виду, чтобы значения Zb Z2, ... Zв момент времени tx = t0 + At можно было вьлислить через начальные значения, а в момент t2 = tx + At через значения на предшествующем шаге и так для каждого г'-ого шага (At = const, i=\+ M).

Для систем, где случайность является определяющим фактором, принцип А? заключается в следующем:

Определяется условное распределение вероятности на первом шаге (^ = t0 + At) для случайного вектора, обозначим его (Zb Z2, ... Z„). Условие состоит в том, что начальное состояние системы соответствует точке траектории (Z\, Z2°,...Z°).

Вычисляются значения координат точки траектории движения системы (tx = t0 + At), как значения координат случайного вектора, заданного распределением, найденным на предыдущем шаге.

Отыскиваются условное распределение вектора {Z\,Z\,...Z2n) на втором шаге

(t2= h+ At), при условии получения соответствующих значений Z) (/ = 1-^-я) на первом

шаге и т.д., пока tt = t0+i At не примет значения (tM = t0+ MAt).

Принцип At является универсальным, применим для широкого класса систем. Его недостатком является неэкономичность с точки зрения затрат машинного времени.

2. Принцип особых состояний (принцип az). При рассмотрении некоторых видов систем можно выделить два вида состояний:

  1. обычное, в котором система находится большую часть времени, при этом Zi(t), (i = l+п) изменяются плавно;

  2. особое, характерное для системы в некоторые моменты времени, причем состояние системы изменяется в эти моменты скачком.

Принцип особых состояний отличается от принципа At тем, что шаг по времени в этом случае не постоянен, является величиной случайной и вычисляется в соответствии с информацией о предыдущем особом состоянии.

Примерами систем, имеющих особые состояния, являются системы массового обслуживания. Особые состояния появляются в моменты поступления заявок, в моменты освобождения каналов и т.д.

Для таких систем применение принципа At является нерациональным, так как при этом возможны пропуски особых состояний и необходимы методы их обнаружения.

В практике использования имитационного моделирования описанные выше принципы при необходимости комбинируют.

Основными методами имитационного моделирования являются: аналитический метод, метод статического моделирования и комбинированный метод (аналитико-статистический) метод.

Аналитический метод применяется для имитации процессов в основном для малых и простых систем, где отсутствует фактор случайности. Например, когда процесс их функционирования описан дифференциальными или интегро-дифференциальными уравнениями. Метод назван условно, так как он объединяет возможности имитации процесса, модель которого получена в виде аналитически замкнутого решения, или решения полученного методами вычислительной математики.

Метод статистического моделирования первоначально развивался как метод статистических испытаний (Монте-Карло). Это - численный метод, состоящий в получении оценок вероятностных характеристик, совпадающих с решением аналитических задач (например, с решением уравнений и вычислением определенного интеграла). В последствии этот метод стал применяться для имитации процессов, происходящих в системах, внутри которых есть источник случайности или которые подвержены случайным воздействиям. Он получил название метода статистического моделирования.

Комбинированный метод (аналитико-статистический) позволяет объединить достоинства аналитического и статистического методов моделирования. Он применяется в случае разработки модели, состоящей из различных модулей, представляющих набор как статистических, так и аналитических моделей, которые взаимодействуют как единое целое. Причем в набор модулей могут входить не только модули соответствующие динамическим моделям, но и модули соответствующие статическим математическим моделям.

В математических моделях сложных объектов, представленных в виде систем массового обслуживания (СМО), фигурируют средства обслуживания, называемые обслуживающими аппаратами (ОА) или каналами, и обслуживаемые заявки, называемые транзактами.

Состояние СМО характеризуется состояниями ОА, транзактов и очередей к ОА. Состояние ОА описывается двоичной переменной, которая может принимать значения «занят» или «свободен». Переменная, характеризующая состояние транзакта, может иметь значения «обслуживания» или «ожидания». Состояние очереди характеризуется количеством находящихся в ней транзактов.

Потоком событий называется последовательность однородных событий, следующих одно за другим в случайные моменты времени. Важной характеристикой потока событий является его интенсивность Я— среднее число событий, приходящееся на единицу времени. Интенсивность потока может быть как постоянной {Л = const), так и переменной, зависящей от времени t. Поток событий называется регулярным, если события следуют одно за другим через определенные, равные промежутки времени. На практике чаще встречаются потоки нерегулярные, со случайными интервалами.


Случайные файлы

Файл
96370.rtf
150717.rtf
143422.rtf
6457-1.rtf
136684.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.