Прогнозирование цены компьютера Pentium 166 на 19 декабря 1997 г (EMM1_1)

Посмотреть архив целиком

10



Башкирский Государственный Университет

Кафедра финансов и налогообложения






ПРИЛОЖЕНИЕ

к курсовой работе на тему:

Прогнозирование цены на

комьютер Pentium 166

на 19 декабря 1997 года.








Выполнила: студентка дн.от.

эк.ф-та,3-го курса,гр. 3.4ЭЮ

Хакимова Д.И.

Проверила: научный рук-ль,

доцент ,к.э.н.

Саяпова А.Р.








г. Уфа 1997 г.


Содержание приложения:






  1. Удаление тренда различными способами используемые программой Statistika версии 4.3

  2. Модель Holt (a =0.300,a=0.800)

  3. Модель Winters (a =0.300,a=0.800)

  4. Модель Брауна (a =0.300,a=0.800)

  5. Регрессионная модель








































  1. Удаление тренда различными способами используемые программой Statistika версии 4.3



Я работала в программе Statistica 4.3 которая позволяет удалить тренд, исходя из ниже предложенных графиков можно увидеть различные способы для его удаления. Но эти способы не явились более подходящими, и поэтому представлены для анализа проделанной курсовой работе.





На этом графике использовался метод Trend subtract

(x=x-(a+b*t)), где а= 6.606, b = -0.52 .

Тренд в данном случае неудалился, так как сам тренд не линейный.

Сделав вывод, что тренд не линейный, я проделала попытку удалить тренд в Nonlinear Estimatoin получила следущее:


Model: PENTIUM = b1+b2/t+b3/t**2

N=62

Dep.var: PENTIUM loss (OBS - PRED)**2

FINAL loss:31.852464424 R=.67433

variance explained: 45.473%


b1

b2

b3

Estimate

4.34597

11.85681

-10.0804






График удаления тренда не линейным способом:



Выше описанным способом тренд тоже не удалился.


  1. Модель Holt (a =0.300,a=0.800)

Примером адаптивной модели предназначенной для прогнозирования сезонных процессов, является модель Хольта. Эта модель предполагает мультипликативное объединение линейного тренда и сезонные составляющие во временном ряду.


Модель Хольта при a = 0.300



Exp.smoothing: SO=6.534 TO = 0.49


TIME

SERIES


Summury of error

Lin.trend; no season;

Alpha= 0.300 Gamma=0.1

PENTIUM

Error

Mean error

.00731672825436

Mean absolute error

.13134104302219

Sums of squares

1.96424677027454

Mean squares

.03168139952056

Mean percentage error

.26328877539247

Mean abs. pers.

3.01698849598955



График по Хольту с a = 0.300



Exp.smoothing: SO=6.534 TO = 0.49

CASE

SMOOTHED SERIES

16.12.97

3.379367

17.12.97

3.343613

18.12.97

3.307860

19.12.97

3.272107


Модель Хольта при a = 0.800


Exp.smoothing: SO=6.534 TO = 0.49


TIME

SERIES


Summury of error

Lin.trend; no season;

Alpha= 0.800 Gamma=0.1

PENTIUM

Error

Mean error

.00315177373958

Mean absolute error

.05706002635321

Sums of squares

.48259413419920

Mean squares

.00778377635805

Mean percentage error

.12944834490985

Mean abs. pers.

1.26337346085392







График по Хольту с a = 0.800


Exp.smoothing: SO=6.534 TO = 0.49

CASE

SMOOTHED SERIES

16.12.97

3.457111

17.12.97

3.423383

18.12.97

3.398655

19.12.97

3.355927


Модель Winters (a =0.300,a=0.800)


Модель Уйнтерса при a = 0.300



Exp.smoothing:Multipl.season(12) SO=6.433 TO = 0.52


TIME

SERIES


Summury of error

Lin.trend; no season; Alpha= 0.300 Delta=.100; Gamma=0.1

PENTIUM

Error

Mean error

.00850967552279

Mean absolute error

.13196744584935

Sums of squares

2.02519074270767

Mean squares

.03266436817876

Mean percentage error

.27239869561423

Mean abs. pers.

3.02001823889308



График по Уинтерсу с a = 0.300



Exp.smoothing:Multipl.season(12) SO=6.433 TO = 0.52


CASE

SMOOTHED SERIES

16.12.97

3.373012

17.12.97

3.337162

18.12.97

3.309019

19.12.97

3.283079


Модель Уйнтерса при a = 0.800


Exp.smoothing:Multipl.season(12) SO=6.433 TO = 0.52


TIME

SERIES


Summury of error

Lin.trend; no season; Alpha= 0.800 Delta=.100; Gamma=0.1

PENTIUM

Error

Mean error

.00387269483310

Mean absolute error

.06040575200437

Sums of squares

.54276104822497

Mean squares

.00875421046649

Mean percentage error

.14058659957529

Mean abs. pers.

1.32624409579650






График по Уинтерсу с a = 0.800



Exp.smoothing:Multipl.season(12) SO=6.433 TO = 0.52


CASE

SMOOTHED SERIES

16.12.97

3.453841

17.12.97

3.429777

18.12.97

3.407928

19.12.97

3.380729



  1. Модель Брауна (a =0.300,a=0.800)


Модель Брауна может отображать развитие не только в виде линейной тенденции, нои в виде случайного процесса, не имеющего тенденции, а также ввиде изиеняющейся параболической тенденции.

Модель Брауна при a = 0.300

Exp.smoothing: SO=4.982

TIME

SERIES


Summury of error

Lin.trend; no season;

Alpha= 0.300

PENTIUM

Error

Mean error

-.0780414476807

Mean absolute error

.1978141110028

Sums of squares

6.8610393089365

Mean squares

.1106619243377

Mean percentage error

-2.2104491142263

Mean abs. pers.

4.0726990990745

График по Брауну с a = 0.300



Exp.smoothing: SO=4.982


CASE

SMOOTHED SERIES

16.12.97

3.530736

17.12.97

3.530736

18.12.97

3.530736

19.12.97

3.530736


Модель Брауна при a = 0.800

Exp.smoothing: SO=4.982

TIME

SERIES


Summury of error

Lin.trend; no season;

Alpha= 0.300

PENTIUM

Error

Mean error

-.0298811251614

Mean absolute error

.08804695430620

Sums of squares

3.1058602054085

Mean squares

.05009465809765

Mean percentage error

-.90807550618029

Mean abs. pers.

1.70449937474829




График по Брауну с a = 0.800



Exp.smoothing: SO=4.982


CASE

SMOOTHED SERIES

16.12.97

3.500203

17.12.97

3.500203

18.12.97

3.500203

19.12.97

3.500203


Прогнозирование по вышеуказанным моделям получается не совсем стабильным.



Регрессионная модель

В экономической деятельности очень часто требуется не только получать прогнозные оценки исследуемого показателя, но и количественно охарактеризовать степень влияния на него других факторов.

Рассматривая зависимость цены на компьютер Pentium166 и инфляции я получаю:

REGRESSION SUMMARY for Dependent Variable: PENTIUM


R=.68998993 RI=.47608611 Abjusted RI=.45593557 F(1,26)=23.626 p<.00005 std. Err of estimate

N = 28

BETA

St.Err. of BETA

B

St.Err. of B

t(26)

p-level

Intercpt



6.701069

.537806

12.46001

.000000

Inf

-6.89990

1.41953

-.345470

.071074

-4.86071

.000049