Общая теория статистики (Контрольная) (ROM-0004)

Посмотреть архив целиком

2

























































Задание 1.

С целью выявления зависимости между экономическими показателями провести группировку 50 ремонтных предприятий железнодорожного транспорта (см. Таб. 1) с равными интервалами, выделив 5 групп.


Исходные данные:

Таб. 1


Группировоч-ный признак

Результатив-ный признак



Группировоч-ный признак

Результатив-ный признак

число вагонов находящихся в ремонте, шт/сут

чистая прибыль предприятия, млн.руб.


число вагонов находящихся в ремонте, шт/сут

чистая прибыль предприятия, млн.руб.

51

8

130


76

10

134

52

11

148


77

6

136

53

36

155


78

7

133

54

2

124


79

1

127

55

2

125


80

7

128

56

29

135


81

1

118

57

14

126


82

5

124

58

14

136


83

15

137

59

8

124


84

6

110

60

8

128


85

17

139

61

5

110


86

8

148

62

8

150


87

1

123

63

1

110


88

10

138

64

6

122


89

21

189

65

18

140


90

11

139

66

4

110


91

2

122

67

9

139


92

2

124

68

2

121


93

1

113

69

1

111


94

8

117

70

5

132


95

6

126

71

1

129


96

3

130

72

7

139


97

3

112

73

9

148


98

2

133

74

25

144


99

25

195

75

16

146


100

5

176


Решение задачи:

  1. Группировка производится по группировочному признаку. Определим величину (шаг) интервала группировки по формуле:



k = 5 , число групп в группировке (из условия)

Xmax, Xmin – максимальное и минимальное значение группировочного

признака

l – величина (шаг) интервала группировки.



  1. Определим нижнюю и верхнюю интервальные границы для каждой группы:

номер границы

группы нижняя верхняя

1 1.0 8.0

2 8.0 15.0

3 15.0 22.0

4 22.0 29.0

5 29.0 36.0



  1. Составим рабочую таблицу, куда сведем первичный статистический материал:


Группы предпри-ятий по кол-ву вагонов нахощящ. на ремонте, шт/сут


Номер предприятия

Число вагонов, находящихся в ремонте, шт/сут

Чистая прибыль предприятия, млн.руб.

1

2

3

4

1.0 - 8.0

51

54

55

59

60

61

62

63

64

66

68

69

70

71

72

77

78

79

80

81

82

84

86

87

91

92

93

94

95

96

97

98

100

8

2

2

8

6

5

8

1

6

4

2

1

5

1

7

6

7

1

7

1

5

6

8

1

2

2

1

8

6

3

3

2

5

130

124

125

124

128

110

150

110

122

110

121

111

132

129

139

136

133

127

128

118

124

110

148

123

122

124

113

117

126

130

112

133

176

ИТОГО :

33

140

4165


8.0 - 15.0


52

57

58

67

73

76

83

88

90


11

14

14

9

9

10

15

10

11


148

126

136

139

148

134

137

138

139

ИТОГО :

9

103

1245


15.0 - 22.0


65

75

85

89


18

16

17

21


140

146

139

189

ИТОГО :

4

72

614


22.0 - 29.0


56

74

99


29

25

25


135

144

195

ИТОГО :

3

79

474


29.0 - 36.0


53


36


155

ИТОГО :

1

36

155



  1. Разработаем аналитическую таблицу взаимосвязи между числом вагонов находящихся на ремонте и чистой прибылью :

Табл. 2

Группы предпр. по кол-ву вагонов поступающих в ремонт

Число предпри-ятий

Число вагонов находящихся в ремонте, шт/сут

Чистая прибыль, млн.руб

Всего по группе

в среднем на одно предприятие

Всего по группе

в среднем на одно предприятие

1.0 - 8.0

33

140

4,2

4165

126,2

8.0 - 15.0

9

103

11,4

1245

138,3

15.0 - 22.0

4

72

18,0

614

153,5

22.0 - 29.0

3

79

26,3

474

158,0

29.0 - 36.0

1

36

36,0

155

155,0


Исследовав показатели работы 50-ти предприятий железнодорожного транспорта, можно сказать, что чистая прибыль предприятия находится в прямой зависимости от числа вагонов находящихся в ремонте.



Задание 2.

Рассчитать коэффициенты вариации по группировочному признаку на основании исходных данных и по аналитической группировке согласно своего варианта из задания 1. Объяснить (если есть) расхождения в значениях полученных коэффициентов.


Решение:

Расчет коэффициента вариации проводится по следующей формуле:



где: G – среднее квадратическое отклонение;

x - средняя величина


1)


n – объем (или численность) совокупности,

х - варианта или значение признака (для интервального ряда принимается

среднее значение)

Рассчитаем показатели вариации для примера, рассмотренного в задании 1. Расчет проводится по группировочному признаку. Во-первых, рассчитаем все показатели по исх. данным (см. табл. 1):



2) Среднее кв. отклонение рассчитываем по формуле:


вернемся к форм. ( 1 )

3) Теперь рассчитаем коэффициент вариации по аналитической таблице (см. табл. 2)

Рассчитаем серединные значения интервалов:


4,5 11,5 18.5 25,5 32,5


1 8 15 22 29 36


, где


f - частота, т.е. число, которое показывает, сколько встречается каждая

варианта:


ваг.

Расчет среднего квадратического отклонения по аналитической группировке:





Вывод: в обоих случаях расчета, коэффициент вариации (V) значительно больше 30 %. Следовательно, рассмотренная совокупность неоднородна и средняя для нее недостаточно типична.


Задание 3.

Провести 20 % механическую выборку из генеральной совокупности, представленной в таблице (использовать все 100 предприятий), по показателю, который является результативным признаком в аналитической группировке задания 1 в соответствии с вариантом. С вероятностью 0,997 рассчитать границы изменения средней величины в генеральной совокупности. Рассчитать среднюю данного признака по генеральной совокупности (по табл.) и сравнить с результатом, полученным на основании расчета по выборочной совокупности. Начало отбора начинать с номера предприятия совпадающего с номером варианта (8).


1) Табл.

Номер

предприятия

Чистая прибыль

предпр., млн.руб.


Номер

предприятия

Чистая прибыль

предпр., млн.руб.

1

2


1

2

8

13

18

23

28

33

38

43

48

203

163

131

134

130

117

133

125

141



53

58

63

68

73

78

83

88

93

98

155

136

110

121

148

133

137

138

113

133


2) Для расчета границ изменения средней характеристики генеральной совокупности по материалам выборки воспользуемся формулами:


( 1 )


( 2 )


( 3 )


Х – средняя генеральной совокупности;

Х – средняя выборочной совокупности;

  • предельная ошибка выборки;


t - коэффициент доверия = 0,997 (по условию);

М – средняя ошибки выборки

G2дисперсия исследуемого показателя;

n – объем выборочной совокупности;

N – объем генеральной совокупности;

n/N – доля выборочной совокупности в объеме генеральной (или %

отбора, выраженный в коэффициенте)


Решение:

  1. В данном варианте задания средняя чистая прибыль на одно предприятие по выборочной совокупности равна

Х=136,8 млн.руб.;

  1. дисперсия равна = 407,46;

  2. коэф-т доверия =3, т.к. вероятность определения границ средней равна =0,997 (по усл);

  3. n/N = 0,2, т.к. процент отбора составляет 20 % (по условию).

  4. Рассчитаем среднюю ошибку по ф. (3):



  1. Рассчитаем предельную ошибку и определим границы изменения средней по ф. (2)



Т.о. с вероятностью 0,997 можно утверждать, что чистая прибыль на одно предприятие в генеральной совокупности будет находиться в пределах от 124,5 млн.руб. до 149,1 млн.руб., включая в себя среднюю по выборочной совокупности.


  1. Теперь рассчитаем среднюю по генеральной совокупности (по 100 предприятиям) и сравним ее с полученной интервальной оценкой по выборке:



где а1 + а2 +. . . +а100 – сумма числа вагонов, находящихся в ремонте

(штук в сутки) на 1, 2, 3 . . .,100 предприятиях.


Вывод: Сравнивая среднюю генеральную совокупность равную 140,27 с интервальной оценкой по выборке 124,5 < x < 149,1 делаем выбор, что интервал с заданной вероятностью заключает в себе генеральную среднюю.



Задание 4.

По данным своего варианта (8) рассчитайте:

  • Индивидуальные и общий индекс цен;

  • Индивидуальные и общий индексы физического объема товарооборота;

  • Общий индекс товарооборота;

  • Экономию или перерасход денежных средств населения в результате изменения цен на товары в отчетном периоде по сравнению с базисным


Исх. данные:


Вид

товара

БАЗИСНЫЙ ПЕРИОД

("0")

ОТЧЕТНЫЙ ПЕРИОД ("1")

Цена за 1 кг, тыс.руб

Продано,

тонн

Цена за 1 кг, тыс.руб

Продано,

тонн

1

2

3

4

5

А

4,50

500

4,90

530

Б

2,00

200

2,10

195

В

1,08

20

1,00

110


Решение:


Индекс – это показатель сравнения двух состояний одного и того же явления (простого или сложного, состоящего из соизмеримых или несоизмеримых элементов); включает 2 вида:

  • Отчетные, оцениваемые данные ("1")

  • Базисные, используемые в качестве базы сравнения ("0")



  1. Найдем индивидуальные индексы по формулам:




(где: р, q – цена, объем соответственно; р1, р0 - цена отчетного, базисного периодов соответственно; q1, q2 - объем отчетного, базисного периодов соответственно)

  • для величины (цены) по каждому виду товара



  • для величины q (объема) по каждому виду товаров:


  1. Найдем общие индексы по формулам:



представляет собой среднее значение индивидуальных индексов (цены, объема), где j – номер товара.



  1. Общий индекс товарооборота равен: