Методы прогнозирования финансовых показателей (prognoz)

Посмотреть архив целиком

1.Модель с аддитивной компонентой

Аддитивную модель прогнозирования можно представить в виде формулы:


F = T + S + E

где: F – прогнозируемое значение; Т – тренд; S – сезонная компонента;

Е – ошибка прогноза.

Алгоритм построения прогнозной модели

Для прогнозирования объема продаж, имеющего сезонный характер, предлагается следующий алгоритм построения прогнозной модели:

1.Определяется тренд, наилучшим образом аппроксимирующий фактические данные. Существенным моментом при этом является предложение использовать полиномиальный тренд, что позволяет сократить ошибку прогнозной модели.

2.Вычитая из фактических значений объёмов продаж значения тренда, определяют величины сезонной компоненты и корректируют таким образом, чтобы их сумма была равна нулю.

3.Рассчитываются ошибки модели как разности между фактическими значениями и значениями модели.

Применение алгоритма рассмотрим на следующем примере.

Исходные данные: Объемы фактических расходов бюджета _________ района, взяты из месячной и годовой отчетности финансового управления администрации ________ района. Данная статистика характеризуется тем, что значения объёма продаж имеют выраженный сезонный характер с возрастающим трендом. Исходная информация представлена в табл. 1.


табл.1

 

Объем фактических расходов

1 кв. 1999 г.

24518

2 кв. 1999 г.

23778

3 кв. 1999 г.

25143

4 кв. 1999 г.

27622

1 кв. 2000 г.

26149

2 кв. 2000 г.

24123

3 кв. 2000 г.

27580

4 кв. 2000 г.

30854

1 кв. 2001 г.

29147

2 кв. 2001 г.

26478

3 кв. 2001 г.

30159

4 кв. 2001 г.

33149

1 кв. 2002 г.

32451


Реализуем алгоритм построения прогнозной модели, описанный выше. Решение данной задачи рекомендуется осуществлять в среде MS Excel, что позволит существенно сократить количество расчётов и время построения модели.

1. Определяем тренд, наилучшим образом аппроксимирующий фактические данные. Для этого рекомендуется использовать полиномиальный тренд, что позволяет сократить ошибку прогнозной модели)




























Таблица 2.
Расчёт значений сезонной компоненты


 

 

Значение тренда

Сезонная компонента

1 кв. 1999 г.

24518

24518

0

2 кв. 1999 г.

23778

24962

-1184

3 кв. 1999 г.

25143

25012

131

4 кв. 1999 г.

27622

25217

2405

1 кв. 2000 г.

26149

26098

51

2 кв. 2000 г.

24123

26958

-2835

3 кв. 2000 г.

27580

27495

85

4 кв. 2000 г.

30854

28017

2837

1 кв. 2001 г.

29147

28964

183

2 кв. 2001 г.

26478

29617

-3139

3 кв. 2001 г.

30159

30498

-339

4 кв. 2001 г.

33149

31485

1664

1 кв. 2002 г.

32451

32451

0


Скорректируем значения сезонной компоненты таким образом, чтобы их сумма была равна нулю.

Таблица 3.
Расчет средних значений сезонной компоненты








 

1999 г.

2000 г.

2001 г.

Итого

Среднее

Сезонная компонента

1 кв.

0

51

183

234

78

89,75

2 кв.

-1184

-2835

-3139

-7158

-2386

-2374,25

3 кв.

131

85

-339

-123

-41

-29,25

4 кв.

2405

2837

1664

6906

2302

2313,75





Сумма

-47

0






-11,75



3. Рассчитываем ошибки модели как разности между фактическими значениями и значениями модели.

Таблица 4.
Расчёт ошибок

 

расходы

Значение модели

Отклонение

1 кв. 1999 г.

24518

24607,75

-89,75

2 кв. 1999 г.

23778

22587,75

1190,25

3 кв. 1999 г.

25143

24982,75

160,25

4 кв. 1999 г.

27622

27530,75

91,25

1 кв. 2000 г.

26149

26187,75

-38,75

2 кв. 2000 г.

24123

24583,75

-460,75

3 кв. 2000 г.

27580

27465,75

114,25

4 кв. 2000 г.

30854

30330,75

523,25

1 кв. 2001 г.

29147

29053,75

93,25

2 кв. 2001 г.

26478

27242,75

-764,75

3 кв. 2001 г.

30159

30468,75

-309,75

4 кв. 2001 г.

33149

33798,75

-649,75

1 кв. 2002 г.

32451

32540,75

-89,75


Находим среднеквадратическую ошибку модели (Е) по формуле:

Е= Σ О2 : Σ (T+S)2

где:
Т
- трендовое значение объёма расходов;
S
– сезонная компонента;
О
- отклонения модели от фактических значений

Е=(3079106/(361151*361151))*100% = 0,002361%

Величина полученной ошибки позволяет говорить, что построенная модель хорошо аппроксимирует фактические данные, т.е. она вполне отражает экономические тенденции, определяющие объём расходов, и является предпосылкой для построения прогнозов высокого качества.


2. Модель с мультипликативной компонентой.


В некоторых временных рядах значение сезонной компоненты не является константой, а представляет собой определенную долю -фондового значения, т.e. значение сезонной компоненты увеличивается с возрастанием значений тренда. Например, рассмотрим график следующих данных об объе­мах расходов. Объем продаж этого продукта так же, как и в предыдущем при­мере, подвержен сезонным колебаниям, и значения его в разные кварталы разные. Однако размах вариации фактических значении относительно линии тренда постоянно возрастает. Такую ситуацию можно представить с помощью модели с мультипликативной компонентой

A=T*S*Е

1.3.1. Расчет сезонной компоненты

Отличие расчета сезонной компоненты для мультипликативной мо­дели от аддитивной модели заключается лишь в том, что в колонку 6 вписы­ваются коэффициенты сезонности (аналог оценок сезонной компоненты в ад­дитивной модели)

Сезонные коэффициенты представляют собой доли тренда, по­этому принимают, что их сумма должна равняться количеству сезонов в году, т.е. 4, а не нулю, как в аддитивной модели.



 

 

Итого за 4 квартала

Скользящая средняя за 4 квартала

Центрированная скользящая средняя

Оценка сезонной компоненты

 

Y

 

S

T

Y/T=S*E

1 кв. 1999 г.

24518

 

 

 

 

2 кв. 1999 г.

23778

 

 

 

 

3 кв. 1999 г.

25143

101061

25265,25

 

 

4 кв. 1999 г.

27622

102692

25673

25469,125

1,084528817

1 кв. 2000 г.

26149

103037

25759,25

25716,125

1,016832824

2 кв. 2000 г.

24123

105474

26368,5

26063,875

0,925533905

3 кв. 2000 г.

27580

108706

27176,5

26772,5

1,030161546

4 кв. 2000 г.

30854

111704

27926

27551,25

1,119876594

1 кв. 2001 г.

29147

114059

28514,75

28220,375

1,032835318

2 кв. 2001 г.

26478

116638

29159,5

28837,125

0,918191394

3 кв. 2001 г.

30159

118933

29733,25

29446,375

1,024200772

4 кв. 2001 г.

33149

122237

30559,25

30146,25

1,099606087

1 кв. 2002 г.

32451

 

 

 

 


Случайные файлы

Файл
158606.rtf
17916-1.rtf
4257-1.rtf
2406.rtf
3336-1.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.