Компьютерное математическое моделирование в экономике (183295)

Посмотреть архив целиком

- 24 -

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ


Шадринский Государственный Педагогический институт











КОМПЬЮТЕРНОЕ МАТЕМАТИЧЕСКОЕ

МОДЕЛИРОВАНИЕ В ЭКОНОМИКЕ.


Курсовая работа.














Выполнили:

Студентки 201 гр.

Благодарева Юлия Григорьевна

Реутова Елена Александровна

Руководитель:

Пайвина Юлия Васильевна






Шадринск, 2003 г.

Оглавление


Введение…………………………………………………….….……..3

  1. Постановка задачи линейного программирования….…...4

  2. Симплекс-метод……………………………………………14

  3. Контрольные вопросы и задания…………………………21

Заключение……………………………………………….…………..24

Литература…………………………………………………….………25

Введение


В последние годы мы особенно отчетливо ощутили, что нет ничего важнее для общества, чем здоровая экономика. Научное исследование основ функционирования экономики – сложная и интересная деятельность. Математические методы в ней играют возрастающую с каждым десятилетием роль, а реализация возникающих при этом математических моделей и получение практически важных результатов невозможны без ЭВМ.


ПОСТАНОВКА ЗАДАЧИ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ

В данном параграфе рассматривается лишь один из разделов - оптимальное пла­нирование - и внутри него одна из моделей, так называемое, линейное программи­рование. Это связано с относительной простотой и ясностью как содержательной постановки соответствующих задач, так и методов решения. О таких интересных, но более сложных проблемах, как выпуклое программирование, динамическое программирование, теория игр мы лишь упомянем, отсылая читателей за подроб­ностями к специальной литературе. Отметим еще, что термин «программирование» в названии этих разделов теории оптимального планирования весьма условен, связан с историческими обстоятельствами и к программированию в общепринятом сейчас смысле прямого отношения не имеет.

Общеизвестно, сколь важно для решения экономических задач планирование - как при рыночной, так и при плановой экономике. Обычно для решения экономи­ческой проблемы существует много способов (стратегий), отнюдь не равноценных по затратам финансов, людских ресурсов, времени исполнения, а также по дости­гаемым результатам. Наилучший из способов (по отношению к выбранному критерию - одному или нескольким) называют оптимальным. Приведем простей­ший пример такого рода задач.

Пример 1. На некотором предприятии могут выпускать изделия двух видов (например, мотоциклы и велосипеды). В силу ограниченности возможностей сборочного цеха в нем могут собирать за день либо 25 мотоциклов (если не собирать вообще велосипеды), либо 100 велосипедов (если не собирать вообще мотоциклы), либо какую-нибудь комбинацию тех и других, определяемую прием­лемыми трудозатратами. Склад может принять не более 70 изделий любого вида в сутки. Известно, что мотоцикл стоит в 2 раза дороже велосипеда. Требуется найти такой план выпуска продукции, который обеспечил бы предприятию наиболь­шую выручку.

Такого рода задачи возникают повседневно в огромном количестве, но в реаль­ности число изделий гораздо больше двух, да и дополнительных условий тоже больше. Решить подобную задачу путем перебора всех мыслимых вариантов часто невозможно даже на ЭВМ. В нашем примере, однако, в ЭВМ нет необходимости - задача решается очень легко.

О
бозначим число выпускаемых за день мотоциклов х, велосипедов - у. Пусть т1 - время (в часах), уходящее на производство одного мотоцикла, а т2 - одного велоси­педа. Из условия задачи следует, что т1 = 4т2. Если завод работает круглосуточно, то, очевидно, при одновременном выпуске обоих изделий



или



Но – 24/т2 - число максимально производимых велосипедов, равное 100. Итак, воз­можности производства определяют условие




Е
ще одно условие - ограниченная емкость склада:


Обозначим цену мотоцикла а1 (руб.), цену велосипеда - а2 (руб.). По условию a1 = 2а2. Общая цена дневной продукции




П
оскольку а2 - заданная положительная константа, то наибольшего значения следует добиваться от величины

Итак, учитывая все условия задачи, приходим к ее математической модели: сре­ди неотрицательных целочисленных решений системы линейных неравенств


(7.71)



найти такое, которое соответствует максимуму линейной функции

f = 2х + у. (7.72)


Проще всего решить эту задачу чисто геометрически. Построим на плоскости (х, у) область, соответствующую неравенствам (7.71) и условию неотрицательности х и у. Эта область выделена на рис.1 жирной линией. Всякая ее точка удовлетво­ряет неравенствам (7.71) и неотрицательности переменных. Пунктирные линии на рисунке - семейство прямых, удовлетворяющих уравнению f = 2х + у = с (с разны­ми значениями константы с). Вполне очевидно, что наибольшему возможному значению f, совместному с предыдущими условиями, соответствует жирная пунк­тирная линия, соприкасающаяся с областью М в точке Р.





25

О 10 20 30 40 50 60 70 80

Рис. 1. Графическое решение задачи об оптимальном плане производства (к примеру 1)


Этой линии соответствует значение f= 80. Пунктирная линия правее хоть и соответствует большему значению f, но не имеет общих точек с М, левее - меньшим значениям f. Координаты точки Р (10, 60) - искомый оптимальный план производства.

Отметим, что нам «повезло» - решение (х, у) оказалось целочисленным. Если бы прямые





пересеклись в точке с нецелочисленными координатами, мы бы столкнулись со значительными проблемами. Еще больше их было бы, если бы наш завод выпускал три и более видов продукции.

Прежде чем обсуждать возникающие при этом математические проблемы, дадим формулировки нескольких классических задач линейного программирования в общем виде.

Пример 2. Транспортная задача. Некий продукт (например, сталь) вырабатыва­ется на m заводах Р1, Р2, ..., Рm, причем ежемесячная выработка составляет a1, а2, …, аm тонн, соответственно. Пусть эту сталь надо доставить на предприятия Q1, Q2, ..., Qk (всего k), причем b1, b2, ..., bk - ежемесячная потребность этих предприятий. Наконец, пусть задана стоимость cij перевозки одной тонны стали с завода Pi на предприятие QJ. Естественно считать, что общее производство стали равно суммар­ной потребности в ней:

a1 + a2 + … + am = b1 + b2 + … + bk (7.73)


Необходимо составить план перевозок, при котором

1) была бы точно удовлетворена потребность в стали предприятий Q1, Q2,..., Qk;

2) была бы вывезена вся сталь с заводов PI, Р2, ..., Рт;

3) общая стоимость перевозок была бы наименьшей.

Обозначим через Хij количество стали (в тоннах), предназначенной к отправке с завода Рi на предприятие QJ. План перевозок состоит из (mk) неотрицательных чисел xij (i = 1, 2, ..., m; j = 1, 2, ..., k).

Таблица 7.10

Схема перевозок стали


В

В

В

В

Отправлено

Из

Из

Из

xm3

Привезено



Первое условие примет вид



(7.74)


Второе условие примет вид



(7.75)





Раз стоимость перевозки одной тонны из Рi, в QJ равна сij, то общая стоимость S всех перевозок равна


(7.76)


Таким образом, мы приходим к следующей чисто математической задаче: дана система m+k линейных алгебраических уравнений (7.74) и (7.75) с m·k неизвестны­ми (обычно m·k » m+k) и линейная функция S. Требуется среди всех неотрица­тельных решений данной системы найти такое, при котором функция S достигает наименьшего значения (минимизируется).

Практическое значение этой задачи огромно, ее умелое решение в масштабах нашей страны могло бы экономить ежегодно огромные средства.

Пример 3. Задача о диете. Пусть у врача-диетолога имеется n различных продук­тов F1, F2, ..., Fn, из которых надо составить диету с учетом их питательности. Пусть для нормального питания человеку необходимо m

веществ N1, N2, …, Nm. Предположим, что за месяц каждому человеку необходимо 1 кг вещества N1, 2 кг вещества N2, ..., m кг вещества Nm. Для составления диеты необходимо знать содержание питательных веществ в каждом продукте. Обозначим через aij количе­ство i-го питательного вещества, содержащегося в одном килограмме j-го продукта. Всю эту информацию представляют в виде, так называемой, матрицы питательно­сти (табл. 7.11).



Таблица 7.11

Матрица питательности

Питательное вещество

Продукт