Равновесная кривая для товара повседневного спроса (1253-1)

Посмотреть архив целиком

Равновесная кривая для товара повседневного спроса

С.Г.Светуньков

Как получить четкое изображение равновесной кривой в пространстве? Предыдущий параграф я закончил тем, что выразил утверждение, будто бы такую кривую построить очень сложно. Так ли это? Для ответа на этот вопрос надо тщательно разобрать методику построения кривой и попытаться сделать такое построение.

Методика построения равновесной кривой на графике, изображающем трехмерное пространство, такова. Изобразив в пространстве поверхность спроса таким образом, следует осуществить сечение поверхности спроса плоскостями постоянных доходов и получить при этом различные типы кривых спроса. Затем на каждую плоскость постоянных доходов наносится кривая предложения. Выше уже было показано, что эти кривые будут располагаться в пространстве параллельно друг другу. Точки пересечения кривых спроса и предложения на плоскостях постоянных доходов и представляют собой искомые точки равновесной кривой.



Рисунок 1. Построение равновесной кривой в трехмерном пространстве (кривая изображена жирной линией).

Остается только соединить их друг с другом отрезками прямых или плавными кривыми, и искомая равновесная кривая будет получена. На рисунке 1 полученная кривая изображена жирной линией. Я взял наиболее простой случай поверхности спроса, когда кривые спроса имеют классическую форму. И даже при этом полученный рисунок оказался достаточно сложен.

Значительно более наглядно и более просто оказывается построить проекции равновесной кривой на плоскости. Рисунок 1 дает представления о том, как эти проекции будут располагаться, и что они будут собой представлять.

Однако, следует сделать вначале одно важное замечание. Поверхность предложения относительно поверхности спроса может располагаться различным образом. А ведь именно их взаимное расположение и определяет характер равновесной кривой и ее форму. Для того, чтобы можно было учесть это обстоятельство, необходимо ввести новое понятие - линию максимального объема спроса.

Линия максимального объема спроса - это линия, соединяющая точки, лежащие на поверхности спроса и имеющие для каждой конкретной величины дохода максимально возможное значение объема спроса. Линия максимальных объемов определяет тот объем потребления, выше которого потребление невозможно. Иначе говоря, линия максимального объема спроса характеризует наивысшие точки поверхности спроса, если под высотой понимать объемы. Поверхности спроса, как это было показано мною ранее, отличаются друг от друга в первую очередь тем, для какого товара они изображаются.

Для товара повседневного спроса линия максимального объема будет представлять собой луч, выходящий на плоскости объем-доход из точки с координатами, соответствующими максимальному объему потребления Qmax и доходу Сtr, при котором интерес покупателя переключается на другой товар. Луч будет проходить параллельно линии пересечения поверхности спроса и плоскости цена-доход и никогда эту плоскость не пересечет. Координаты объема этого луча будут величиной постоянной.

Если рассмотреть проекцию этого луча на плоскость цена-объем, то легко убедиться в том, что эта проекция параллельна оси цен (рисунок 2).

Поверхность предложения, чья проекция на плоскость цена-объем представляется в виде кривой предложения, может располагаться тремя способами относительно линии максимальных объемов:

- она может пересечь эту линию и с увеличением цены пройти выше линии;

- она может достичь этой линии и далее с ростом цены совпасть с ней;

- она может так и не достичь этой линии и при увеличении цены всегда располагаться ниже ее.

Все эти три случая изображены на рисунке 2. В каждом из этих трех случаев пересечение поверхности спроса с поверхностью предложения дает свою оригинальную равновесную кривую.



Рисунок 2. Проекции линии максимального объема и поверхностей предложения на плоскость цена-объем

Рассмотрим проекции каждой такой кривой на плоскости, составляющие рассматриваемое мною пространство. Прежде всего, следует вновь отметить, что проекция равновесной кривой на плоскость объем-цена совпадет с самой кривой предложения. Поэтому рассматривать проекции равновесных кривых на эту плоскость нет смысла - это всегда будут кривые 1, 2 или 3 рисунка 2.

1. Поверхность предложения пересекает линию максимального объема спроса

Рассмотрю первый случай рисунка 2, когда максимальные объемы поверхности предложения проходят выше линии максимальных объемов поверхности спроса.

Повторять рисунок 7.1 для каждого из рассматриваемых мною трех случаев я считаю здесь излишним - графическое изображение равновесной кривой в пространстве будет очень громоздким. В своих черновиках я построил фигуру в пространстве таким образом, как об этом было сказано в параграфе 7, а затем получил проекции равновесной кривой на две плоскости - плоскость объем-доход и плоскость цена-доход. Именно эти проекции будут являться предметом тщательного анализа.

Проекция равновесной кривой на плоскость объем-доход изображена на рисунке 3. На нем оставлены наиболее характерные для предыдущих рисунков координаты - максимальный объем, объем рационального потребления, доход, при котором происходит "переключение" интересов покупателя на другой продукт, если цена данного товара нулевая.

Как видно из рисунка, полученная проекция в общих чертах повторяет основные характеристики рисунка 1.2.1, хотя пропорции и отдельные точки смещены. Тем не менее, максимальный объем потребления и рациональный объемы остаются теми граничными величинами, которые определяют кривую равновесия.



Рисунок 3. Проекция равновесной кривой на плоскость объем-доход. Первый случай

Следует обратить внимание на то, что равновесная кривая начинается не в точке с нулевыми координатами, а в точке, когда доход потребителя будет равен некоторой величине С0, а объемы приобретения равны нулю. Также принципиальное отличие от рисунка 1.2.1 заключается в том, что на доход, при котором происходило <переключение> интересов на другой товар при нулевой цене данного, уже не является координатой максимального объема - координата максимального объема на равновесной кривой сдвинулась правее.

Полученная проекция может найти интересные приложения для практики - наблюдая приращения потребления товара при небольшом изменении дохода, можно определить, на каком участке равновесной кривой находится рыночное равновесие и прогнозировать на небольшой промежуток времени изменение объемов в зависимости от прогнозируемых доходов.

Примерно такого же вида кривая будет получена, если равновесную кривую спроецировать на плоскость цена-доход (рисунок 4).

Она также начинается при доходе, равном С0. Однако при этом цена товара вовсе не равна нулю, а равна величине Р0, которая, как уже было показано ранее, определяется себестоимостью товара. Проекция равновесной кривой также стремится к некоторой асимптоте, которая имеет координату на оси цен, несколько выше себестоимости и проходит параллельно оси доходов. Цена, определяющая эту линию, характеризует ту сумму, при которой производитель получает минимальную, но вполне приемлемую для него прибыль, и к тому же эта цена вполне устраивает покупателя.



Рисунок 4. Проекция равновесной кривой на плоскость цена-доход. Первый случай.

Без доказательства приведу очевидное утверждение. Максимальная точка проекции равновесной кривой на плоскость объем-доход имеет в качестве координаты доход, при котором проекция равновесной кривой на плоскость цена-доход также соответствует максимуму.

2. Поверхность предложения СОВПАДАЕТ С линией максимального объема спроса

Чисто теоретически может существовать вариант, обозначенный на рисунке 2 цифрой 2. Что он означает? Этот случай возможен в том случае, когда линия максимальных объемов будет лежать не только на поверхности спроса, но и на поверхности предложения. То есть линия пересечения поверхностей спроса и предложения, которая является равновесной кривой, в некоторой своей части совпадет с линией максимальных объемов.

Этот случай следует признать мало вероятным. Действительно, ситуацию, когда максимально возможный объем спроса точно соответствовал технологическому максимуму возможностей фирм, следует признать практически невозможной. Тем не менее, если теоретически такая возможность существует, возможно, что и на практике придется с ней столкнуться. Поэтому следует этот случай разобрать, даже признавая его невероятным.

Равновесная кривая, полученная в этом случае, имеет очень необычный характер. Дело в том, что линия максимальных объемов для рассматриваемого товара уходит в бесконечность с увеличением в бесконечность цены товара и дохода потребителя. А так как равновесная кривая в своем максимальном положении совпадает с линией максимальных объемов, значит, что и равновесная кривая также уходит в бесконечность и имеет ограничение только по объемам.

Как и в предыдущем случае, рассмотрю не саму кривую в пространстве, а проекции кривой равновесия на плоскость объем-доход (рисунок 5) и плоскость цена-доход (рисунок 6).

Необычность поведения кривой равновесия обнаруживается уже на первой проекции, а именно на рисунке 5. Дело в том, что кривая равновесия представляет собой в данном случае уже сложную фигуру, а не кривую в строгом математическом смысле - одному значению фактора соответствует два значения аргумента и наоборот. До точки перелома, которая обозначена на рисунке 5, равновесная кривая ведет себя нормальным образом, однако при достижении поверхностью предложения линии максимальных объемов и совпадении с ней кривая раздваивается и превращается уже в фигуру, а не кривую.


Случайные файлы

Файл
64645.rtf
30710.rtf
Ponyatie_normy.doc
114281.rtf
16320-1.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.