Компьютерное моделирование в экологии (169641)

Посмотреть архив целиком

Городской методический центр информационных технологий

г. Мурманска







Компьютерное моделирование в экологии

Реферат





Выполнил: Паялов Е.В.

(ученик 11 класса школы № 49)

Проверил: Пустоваченко Н.Н.

(директор ГМЦИТ г. Мурманска)









Мурманск, 2005



Содержание

Введение………………………………………………………………………….3

1. Компьютерное моделирование в экологии………………………………….5

Заключение……………………………………………………………………….23

Список литературы………………………………………………………………24





























Введение

Экология – одно из слов, появившихся сравнительно недавно у всех на устах и на страницах газет и журналов. Ещё в 60-х годах XX века никто, кроме узких специалистов, его не знал, да и большинство из тех, кто знал, использовал в таком смысле, который вряд ли способен заинтересовать широкую общественность. А между тем, термину более 120 лет.

Математическое моделирование в экологии используется практически с момента возникновения этой науки. И, хотя поведение организмов в живой природе гораздо труднее адекватно описать средствами математики, чем самые сложные физические процессы, модели помогают установить некоторые закономерности и общие тенденции развития отдельных популяций, а также сообществ. Кажется удивительным, что люди, занимающиеся живой природой воссоздают её в искусственной математической форме, но есть веские причины, которые стимулируют эти занятия. Вот некоторые цели создания математических моделей в экологии:

  • Модели помогают выделить суть или объединить и выразить с помощью нескольких параметров важные разрозненные свойства большого числа уникальных наблюдений, что облегчает экологу анализ рассматриваемого процесса или проблемы.

  • Модели выступают в качестве «общего языка», с помощью которого может быть описано каждое уникальное явление, и относительные свойства таких явлений становятся более понятными.

  • Модель может служить образцом «идеального объекта» или идеализированного поведения, при сравнении с которым можно оценивать и измерять реальные объекты и процессы.

  • Модели действительно могут пролить свет на реальный мир, несовершенными имитациями которого они являются.

Цель данной работы – познакомиться с некоторыми методами компьютерного моделирования в экологии и доказать важность компьютеров в моделировании экологических процессов.

Однако математическое (компьютерное) моделирование в экологии – достаточно обширная область исследования и по выбору объектов моделирования, и по набору методов, и по спектру решаемых задач. Поэтому довольно трудно охватить сразу все аспекты моделирования. Внимание в данной работе обращено на два класса методов: моделирование с помощью дифференциальных уравнений и методы, основывающиеся на экстремальных принципах биологии. Если примеры вариационных моделей относятся к довольно широкому кругу растительных и животных сообществ, то для подходов, основанных на дифференциальных уравнениях, в виду обширности материала внимание сконцентрировано на моделировании сообществ микроорганизмов.

Модели каждого из методов, безусловно, обладают своими достоинствами и недостатками. Так, дифференциальные или разностные уравнения позволяют описывать динамику процессов в режиме реального времени, тогда как вариационные методы, как правило, предсказывают лишь конечное стационарное состояние сообщества. Но на пути имитаций с помощью уравнений возникают трудности как принципиального, так и технического характера. Принципиальная трудность состоит в том, что не существует систематических правил вывода самих уравнений. Процедуры их составления основываются на полуэмпирических закономерностях, правдоподобных рассуждениях, аналогиях и искусстве модельера. Технические трудности связаны с высокой размерностью задач по моделированию сообществ. Для существенно многовидовых сообществ, потребляющих многочисленные ресурсы, требуется подбор сотен коэффициентов и анализ систем из десятков уравнений.

1. Компьютерное моделирование в экологии

1. Примеры уравнений. В разделе о моделировании с помощью дифференциальных уравнений в первую очередь рассматриваются модели фитопланктонных и микробиологических сообществ.

2. Моделирование сообществ фитопланктона. Традиционный путь изучения сообществ микроорганизмов заключается в моделировании непрерывных культур. Общее уравнение, описывающее кинетику концентрации клеток в таком процессе, имеет вид



где x – концентрация клеток в культиваторе, – функция, описывающая размножение популяции, d – скорость вымывания. Скорость размножения может зависеть от концентрации клеток, концентрации субстрата s, температуры, pH среды и прочих факторов.

В микробиологических системах, как правило, скорость роста лимитируется концентрацией субстрата, что отражается зависимостью, предложенной Ж.Моно (Monod, 1942):



где – максимальная скорость роста организмов при данных условиях, – видоспецифическая константа, численно равная концентрации субстрата, при которой скорость роста культуры равна половине максимальной (константа полунасыщения).

При моделировании динамики фитопланктона важную роль играет учет влияния уровня освещенности на скорость роста. В книге С.Йоргенсена (1985) описаны некоторые виды уравнений, применяемых в моделях. Зависимость между скоростью роста (скоростью первичного продуцирования) и освещенностью может быть описана уравнением Михаэлиса-Ментен



здесь I – освещенность, KI – константа полунасыщения по освещенности.

При освещенности выше пороговой (IH), начиная с которой происходит угнетение фотосинтеза, можно записать следующую зависимость:



Значения всех констант () зависят от адаптации к освещенности и температуры. Зависимость KI от температуры, как правило, линейна: ; am, KI0 – константы, KI0 – константа полунасыщения по освещенности в нулевой точке температурной шкалы. Зависимость IH от температуры так же может быть выражена линейной функцией: ; IH0 – пороговая освещенность в нулевой точке температурной шкалы, aH – константа.

Как уже было сказано, скорость роста зависит от концентрации биогенных веществ. Для фитопланктона элементами, способными лимитировать рост, могут являться, например, азот, фосфор и углерод. Возможные способы отражения этого факта в работе С.Йоргенсена описаны следующим образом

,

где P, N, C – концентрация растворенного фосфора, азота и углерода; KP, KN, KС – соответствующие константы полунасыщения. Возможно также использование средней величины лимитирующих факторов: .

В работах Н.С.Абросова с коллегами была предложена следующая модель динамики экосистемы. Рассматривают организмы одного трофического уровня, которые существуют за счет совместного потребления ресурсов питания. Пусть  ij(s1,...,sm) скорость потребления единицей биомассы (особью) вида i ресурса j;  i =  i(s1,...,sm) – удельная скорость прироста биомассы (плотности) i-го вида; s = (s1,...,sm) – вектор концентрации ресурсов в среде; di – удельная скорость элиминации организмов i-го вида; Аj – скорость поступления j-го субстрата извне на единицу объема экосистемы; Di – удельная скорость удаления ресурса в открытой системе. Тогда динамика системы описывается уравнениями

(1)

Модель, описывающая культивируемое в хемостате сообщество, является частным случаем модели (3.1) при условиях di = Dj = D, = Aj/D, где D – скорость разведения культуры, – концентрация j-го субстрата в поступающей в реактор питательной среде, и задается системой уравнений



(Хемостат – непрерывный культиватор, в котором за счет саморегулирующх механизмов популяции поддерживается постоянная плотность популяции.)

В случае взаимозаменяемых ресурсов зависимость  i(s) описывается выражением



или его линейной аппроксимацией

,

где  ij – элементы матрицы приспособленности: , здесьij = cijYij, где cij – удельная скорость потребления j-го субстрата i-м видом организма, а Yij – экономический коэффициент использования j-го вещества i-м видом.

Если ресурсы взаимонезаменяемы, то



или

.

В приведенных выше формулах символ обозначает максимально возможную удельную скорость роста организмов i-го вида; Kij – константа полунасыщения роста i-го вида на j-м субстрате.

В моделях, использующих дифференциальные уравнения, возможен учет лимитирования роста световой энергией. В этом случае предлагается использовать следующую зависимость:



здесь xi – концентрация клеток i-го вида; μi – удельная скорость роста i-го вида; – максимально возможная удельная скорость роста организмов i-го вида; – процентное содержание хлорофилла в биомассе; li – коэффициент поглощения света i-м видом; – КПД фотосинтеза i-го вида клеток; Yiвеличина, обратная калорийности биомассы i-го вида клеток; E – мощность ФАР (фотосинтетически активной радиации), падающей на поверхность культуры; d – толщина слоя культуры в кювете культиватора (приведено выражение для удельной скорости μi в случае лимитирования совместного роста двух видов только энергией света) (Абросов, Ковров, 1977).

А.Я.Болсуновским (1999) была предложена следующая математическая модель динамики компонентов сообщества из двух видов (спирулина и хлорелла), рост которых лимитируется интенсивностью света всей области ФАР


Случайные файлы

Файл
39236.rtf
13689.rtf
168139.rtf
74027.rtf
bilet-konstituz.doc




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.