Математическое моделирование окружающей среды (19816-1)

Посмотреть архив целиком

Математическое моделирование окружающей среды

Реферат выполнил: Студент группы ВТ26-5 Садовский М.В.

ГОСКОМВУЗ

Красноярский Государственный Технический Университет

Кафедра: МО ЭВМ

Красноярск

Введение:

При изучении любого явления вначале получают качественное описание проблемы. На этапе моделирования качественное представление переходит в количественное. На этом этапе определяют функциональные зависимости между переменными для каждого варианта решения и входных данных выходные данные системы. Построение моделей – процедура неформальная и очень сильно зависит от опыта исследователя, всегда опирается на определённый опытный материал. Модель должна правильно отражать явления, однако этого мало – она должна быть удобной для использования. Поэтому степень детализации модели, форма её представления зависят от исследования.

Изучение и формализация опытного материала – не единственный способ построения математической модели. Важную роль играет получение моделей, описывающих частные явления, из моделей более общих. Сегодня математическое моделирование применяют в различных областях знаний, выработано немало принципов и подходов, носящих достаточно общий характер.

Основная задача научного анализа – выделить реальные движения из множества мысленно допустимых, сформулировать принципы их отбора. Здесь термин “движение” употребляется в широком смысле – изменения вообще, всякое взаимодействие материальных объектов. В различных областях знаний принципы отбора движений разные. Принято различать три уровня организации материи: неживая, живая и мыслящая. На самом нижнем уровне – неживой материи – основными принципами отбора являются законы сохранения вещества, импульса, энергии и т.п. Любое моделирование начинается с выбора основных (фазовых) переменных, с помощью которых записывают законы сохранения.

Законы сохранения не выделяют единственного решения и не исчерпывают всех принципов отбора. Очень важны различные условия (ограничения): граничные, начальные и др.

На уровне живой материи все принципы отбора движений, справедливые для неживой материи, сохраняют свою силу. Поэтому и здесь процесс моделирования начинается с записи законов сохранения. Однако основные переменные оказываются уже иными.

Преимущества математических моделей состоят в том, что они точны и абстрактны, передают информацию логически однозначным образом. Модели точны, поскольку позволяют осуществлять предсказания, которые можно сравнить с реальными данными, поставив эксперимент или проведя необходимые наблюдения.

Модели абстрактны, так как символическая логика математики извлекает те и только те элементы, которые важны для дедуктивной логики рассуждения, исключая все посторонние значения.

Недостатки математических моделей заключаются часто в сложности математического аппарата. Возникают трудности перевода результатов с языка математики на язык реальной жизни. Пожалуй, самый большой недостаток математической модели связан с тем искажением, которое можно привнести в саму проблему, упорно отстаивая конкретную модель, даже если в действительности она не соответствует фактам, а также с теми трудностями, которые возникают иногда при необходимости отказаться от модели, оказавшейся неперспективной. Математическое моделирование настолько увлекательное занятие, что “модельеру” очень легко отойти от реальности и увлечься применением математических языков к абстрактным явлениям. Именно поэтому следует помнить, что моделирование в прикладной математике – это лишь один из этапов широкой стратегии исследования.

Моделирование водных экосистем:

Научно-технический прогресс, развитие сельского хозяйства, урбанизация привели к загрязнению природных вод. Проблема загрязнения вод приобрела глобальный характер. В настоящее время выделяют химическое, физическое, биологическое, тепловое, радиоактивное типы загрязнений.

Загрязняющие вещества, в зависимости от типа источника загрязнения, разными путями попадают в водную среду. Они могут поступать из атмосферы; могут быть смыты склоновым стоком с сельскохозяйственных полей и угодий в подземные и речные воды; загрязнение также может быть бактериальным в результате развития и отмирания водной растительности. Поступление загрязняющих веществ в водоём может происходить непрерывно (по времени) или в результате массового сброса, в виде точечных или распределённых в пространстве источников.

При имитационном моделировании качества воды необходимо совместное описание гидрофизических и химико-биологических процессов. Задача моделирования заключается в том, чтобы научиться предвидеть, возможно, более отдалённые последствия вмешательства человека в установившийся в природе круговорот веществ и уметь нейтрализовать нежелательные результаты.

Под экосистемой понимают единый природно-антропогенный комплекс, образованный живыми организмами и средой их обитания, в котором экологические компоненты связаны между собой причинно-следственными связями, обменом веществ и распределением потока энергии. Водная экосистема является элементом системы более высокого порядка – биосферы. Водоём – открытая система, связанная с окружающей средой входными и выходными данными.

Остановимся на описании водных потоков и в качестве примера Упрощённое уравнение для расчёта температурного режима реки. Температурный режим водных потоков описывается уравнением теплопроводности Фурье –Кирхгофа:

Математическое моделирование глобального развития:

В настоящее время проблема “Человек и среда его обитания” широко обсуждается во всём мире. Рост населения, истощение природных ресурсов, отрицательные воздействия человека на окружающую среду, нехватка продуктов питания в некоторых развивающихся странах – вот основные аспекты этой проблемы. В условиях научно-технической революции воздействие человека на окружающую его среду приобрело масштабы, которые можно сравнить с природными процессами. Возникла реальная угроза необратимых отрицательных последствий. Современные социально-экономические процессы взаимодействия человека и окружающей среды настолько сложны и масштабны, что нельзя пассивно надеяться на их стихийную адаптацию в желательном направлении. Возникает задача – изучить действие всех в совокупности факторов, обуславливающих развитие человечества, найти пути сознательного управления этим развитием.

В этих условиях важным инструментом анализа управления развитием сложных систем становятся методы математического моделирования. Методологической базой комплексного исследования наиболее важных сторон развития человеческого общества является системный анализ. Системный анализ – это прикладная дисциплина, занимающаяся решением конкретных проблем, возникающих в процессе проектирования и анализа сложных технических, биологических, экономических и прочих систем.

Глобальные модели Форрестера и Мидоуза.

Первая попытка формализовать описание экологических процессов была принята в 1971 г. американским исследователем Дж. Форрестером. В своей книге “Мировая динамика” Форрестер предложил некоторый вариант модели экономического развития, содержащий лишь два экологических параметра: численность населения и загрязнение среды. Модель позволила оценивать взаимное влияние этих параметров, с одной стороны, и темпов экономического развития – с другой. Хотя, как писал сам Форрестер, основная задача его книги была чисто методической, а модель носила учебный характер, роль его работы в развитии исследований глобального характера трудно переоценить. Впервые была продемонстрирована принципиальная возможность объединить производственные, социальные и экологические процессы одним формализмом. Через год после “Мировой динамики” вышла в свет книга “Пределы роста”, написанная группой ученых под руководством Д. Мидоуза. Модель Мидоуза – “Мир - 3” – представляет собой систему нелинейных дифференциальных уравнений, описывающих динамику взаимодействия таких секторов, как народонаселение, промышленность, сельское хозяйство, не возобновляемые природные процессы, загрязнение среды и др. Целью их работы было выявление общих качественных тенденций процесса взаимосвязанного изменения основных переменных системы, анализ чувствительности результатов по отношению к различным заложенным в модель предположениям.

Работы Форрестера и Мидоуза вызвали широкий отклик в мировой литературе. Принципиальным недостатком математических моделей “Мир-2” и “Мир-3” являлось то, что модели не отражали возможности сознательного воздействия человека на процесс развития. Но следует отметить определённое положительное значение указанных работ. Впервые были системно проанализированы некоторые глобальные экономические. Демографические и экологические процессы.

Проект “Стратегия выживания” Месаровича – Пестеля.

Следующим этапом в работах по глобальному моделированию явился проект “Стратегия выживания”, который возглавил М. Месарович (США) и Э. Пестель (ФРГ). Критикуя модель “Мир-3” как “механическую”, Месарович и Пестель выдвигают задачу построения “кибернетической” модели мира. Основные принципы её построения могут быть сформулированы в трёх тезисах:

1. Модель, отражающая сложные процессы взаимодействия человека с окружающей средой, должна основываться на теории многоуровневых иерархических систем.

2. Модель должна быть управляемой, т.е. включать в себя процесс принятия решений, что позволяет учесть возможность сознательного воздействия человека на развитие мировой системы. Для этого необходимо обеспечить работу в режиме диалога между исследователем модели и ЭВМ.


Случайные файлы

Файл
5903-1.rtf
142655.rtf
23479.rtf
76361-1.rtf
26561.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.