Биологическая активность и микробиологическая рекультивыция почв, загрязненных нефтепродуктами (6803-1)

Посмотреть архив целиком

Биологическая активность и микробиологическая рекультивыция почв, загрязненных нефтепродуктами

Алехин В.Г., Емцев В.Т.,Рогозина Е.А., Фахрутдинов А.И.

Загрязнение почвы углеводородным сырьем и ее биологическая активность

Естественное восстановление плодородия почв при загрязнении нефтью происходит значительно дольше, чем при других техногенных загрязнениях. Резко изменяется водопроницаемость вследствие гидрофобизации, структурные отдельности не смачиваются, а вода как бы "проваливается" в нижние горизонты профиля почвы; влажность уменьшается. Как следствие этого - выпадение одного из главных звеньев ценоза - растительности [I].

Нефть и нефтепродукты вызывают практически полную депрессию функциональной активности флоры и фауны. Ингибируется жизнедеятельность большинства микроорганизмов, включая их ферментативную активность. Управление процессами биодеградации нефти должно быть направлено, прежде всего, на активизацию микробных сообществ, создание оптимальных условий их существования [2]. Отмечается большая неоднородность распределения нефтяных компонентов в почвах разных участков нефтепромыслов, что зависит от физических и химических свойств конкретных почвенных разностей, качества и состава поступившей нефти [З]. В результате этого условия самоочищения окружающей среды от токсичных органических веществ техногенного происхождения в ландшафтных зонах и областях России различны [4].

Попадая в почву, нефть увеличивает общее количество углерода. В составе гумуса возрастает нерастворимый остаток, что является одной из причин ухудшения плодородия. Это, в свою очередь, наносит ощутимый экономический ущерб земледелию [5]. Возрастает отношение C:N. Ухудшается азотный режим [б], что в случае рекультивации требует внесения повышенных доз азотных удобрений [7]. На окисление 1 г нефти требуется 80 мг азота и 8 мг фосфора [8, 9]. Рекомендуется вносить массированные дозы органических удобрений, что повышает биохимическую и микробиологическую активность почв, быстрее снижает количество остаточной нефти, чем при внесении одних минеральных удобрений [10].

Почва, обладая свойством дисперсного гетерогенного тела, действует как хромотографическая колонка, в которой происходит послойное перераспределение компонентов нефти. Показано, что угнетение растений начинается, когда количество нефтяных углеводородов (УВ) в почве становится выше 1 кг/м2.

И.Г.Калачников [11] выделяет три этапа процесса самоочищения почвы, 1-й этап (1-1,5 года) характеризуется физико-химическими процессами, включающими вы-мывание, выветривание, распределение нефтяных УВ по почвенному профилю. Исчезают УВ Cig-Cig. Наблюдается активизация микрофлоры. На П-ом этапе (3-4 года) происходит биологическое превращение метанонафтено-вых и ароматических УВ. 111-й этап включает деградацию полициклической ароматики. На всех этапах, а особенно на Ш-м, рекомендуется активное рыхление почвы, внесение разрыхлителей, например, торфа, а также NPK, которые способствуют снижению содержания алифатиче-ских структур в разрушающихся углеводородах [II]. По силе токсического действия на микроорганизмы нефтяные фракции располагаются в следующей убывающей последовательности: ароматические УВ-циклопарафи-новая фракция-парафиновая [12, 13].

Небольшое количество УВ (5 г/100 г почвы) стимулирует деятельность микрофлоры [14]. Однако, процесс нитрификации ингибируется любой концентрацией УВ; нитрификация является наиболее чувствительным процессом на "нефтяное" загрязнение почвы [15]. Наиболее важными условиями активной деятельности микрофлоры в присутствии нефтяных загрязнений также является влажность и температура почвы [1б].

Для активной рекультивации почво-грунтов в качестве основных и необходимых компонентов нужны минеральные удобрения, предпочтительнее аммонийные формы азота и фосфор, а также активные культуры нефтеокис-ляющих микроорганизмов (НОМ) [17].

Внесение удобрений (NigoPlsoK-oo) в загрязненную почву (6% УВ) увеличивает биологическую активность: возрастает интенсивность дыхания, коэффициент минерализации, активность ряда ферментов. Чувствительность же отдельных групп микроорганизмов к отдельным фракциям нефти определяется химическим составом и физическими свойствами последних [18-20].

Интересно отметить, что УВ, попадающие в почву, обогащают ее углеродом и способны повысить активность биологической азотфиксации [2]. Увеличение интенсивности нефтяного загрязнения (до нескольких процентов) приводит к увеличению концентрации азота, являющегося следствием увеличения численности свободно живущих азотфиксаторов; одновременно снижается нитрифицирующая активность, и основная часть азота выступает в аммонийной форме [21]. Способность к фиксации азота азотобактером проявляется на средах с октаном, толуолом, салициллатом [22]. Выделен ряд бактерий (ноккар-дия, артробактер, бревибактерум), способных усваивать атмосферный азот; у некоторых бактерий фиксация азота была выше при культивировании на средах с парафином (Cii-622), чем с сахарозой. В почвах, содержащих небольшое количество битумных веществ (0,2%), таких бактерий было больше, чем в контрольных почвах [23, 24].

Таким образом, влияние нефти и отдельных ее продуктов на почву и почвообразовательный процесс исследован довольно подробно. Окисление нефти начинается сразу после ее попадания в почву. Общими чертами этого процесса является быстрое разрушение метановонафтено-вых фракций, снижение содержания полициклических УВ в нафтен оароматической фракции, относительное увеличение доли смолистых веществ в нефти, переход части нефтяных компонентов в нерастворимые в органических растворителях формы. Скорость изменения отдельных УВ и групповых фракций зависит от природно-климатических зон и состава исходной нефти [25, 2б].

Необходимо отметить важность аэрирования почв, в частности, путем внесения рыхлых материалов, например, туффита, торфа, соломы, а также искусственных структурообразователей [27, 28].

Экспериментальная часть

Микрополевой опыт по разработке технологии рекультивации аварийного загрязнения почвы нелетучими фракциями газового конденсата проводился на участке насыпного песчаного грунта, расположенном возле кранового узла газоконденсатного трубопровода. Почвы-подзолы иллювиально-железистые, расположенные на размытых останцах в пойме р.Оби. Почвообразующими породами являются аллювиальные пески и слоистые супеси речных террас р.Оби. Имеют сильнокислую реакцию (рН 4,8).

Климатические условия района проведения исследований характеризуются суровой и продолжительной зимой, коротким, но порой жарким летом и коротким весенне-осенним периодом.

Весенний переход средней суточной температуры через О °С по многолетним наблюдениям происходит 21.4- 01.5, осенью - 11.10-21.10. Продолжительность безморозного периода - от 53 до 138 дней. Сумма эффективных температур - 1300 °С, колебания температур в июле - от -1 до +34 °С, средняя относительная влажность воздуха - 55-60% (в 13 часов). Средняя дата первого заморозка на почве - 1.09. Количество осадков за теплый период (апрель-октябрь) - 350-400 мм. Снежный покров удерживается от 200 до 220 дней в году. Продолжительность вегетационного периода со средней суточной температурой ниже 15 °С - 110-120 дней.

В опыте изучали процессы деструкции углеводородов препаратами нефтеокисляющих микроорганизмов, влияние на эти процессы торфа, древесных опилок хвойных пород и сбалансированных по NPK минеральных удобрений на фоне оптимизации рН. Внесением в почву мела рН доводили до 6,8. В качестве биотеста, характеризующего степень рекультивации, а также как возможного активного агента рекультивации, на опытные делянки в двух сериях опыта высевался костер безостый.

Для создания выровненного фона нефтезагрязнения, а также для имитации аварийного загрязнения, перед закладкой опыта на почву был нанесен газоконденсат, состоящий на 60% из тяжелых и 40% летучих углеводородов (алифатических, ароматических и алициклических), до проникновения его на глубину 20 см. До нанесения нефтепродукта в почву и после нанесения определяли содержание органического вещества и отдельно нефтепродукта: количество органического вещества в почве до внесения нефтепродукта было равным 1569 мг/кг, а нефтепродуктов - 1408 мг/кг, а после нанесения нефтепродукта количество органического вещества было 5907 мг/кг, нефтепродуктов - 4259 мг/кг.

Образцы для анализов отбирались в 10-кратной по-вторности до заливки почвы газовым конденсатом, через 3 дня после заливки почвы, во время закладки опыта и в период уборки урожая костра безостого. Всего рекульти-вационный период продолжался в течение 60 суток.

На рис. 1 приведена схема опыта, состоящего из трех серий. В первой серии в качестве биодеструкторов нефтепродукта применялся препарат ВНИГРИ "Нафтокс". Во второй серии - "Нафтокс" и подсев костра безостого в варианты с внесением тех или иных биогенных веществ (NPK, торф и опилки). В третьей серии с такими же вариантами, как и во второй серии, в качестве биодеструктора испытывался препарат "Псевдомин", разработанный кафедрой микробиологии ТСХА.

Площадь делянок в вариантах опыта 2,25 м2. Повторность опыта трехкратная.

Бактериальные препараты и биогенные вещества, согласно схеме опыта, вносились в соответствующие варианты и повторности опыта и лопатой перемешивались со слоем грунта на глубину проникновения газового конденсата.

I

Контроль

1

N120P180K90

2

N120P180K90 + торф

3

N120P180K90 + торф + опилки

4






II

N120P180K90+ торф + опилки

4

Контроль

1

N120P180K90

2

N120P180K90 + торф

3






III

N120P180K90 + торф

3

N120P180K90 + торф + опилки

4

Контроль

1

N120P180K90

2


Случайные файлы

Файл
169294.rtf
5107-1.rtf
72315-1.rtf
92853.rtf
70363.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.