Формально–кинетический анализ гипотез (166621)

Посмотреть архив целиком

4



Формально – кинетический анализ гипотез


Кинетический анализ гипотез – важный этап рациональной стратегии, предшествующий планированию кинетического эксперимента с целью дискриминации гипотез. Каждую гипотезу необходимо проанализировать с учётом различных сочетаний быстрых и медленных стадий (приближения квазистационарности, квазиравновесия, возможных лимитирующих стадий), с учётом различной структуры материальных балансов по катализатору, а также природы поверхности в случае гетерогенных катализаторов и состояния комплексов в растворе в случае гомогенного катализа комплексами металлов.


Стехиометрический анализ механизмов.


Теория маршрутов

Первый этап формально-кинетического анализа гипотез о механизме – стехиометрический анализ механизмов. Основой такого анализа является теория маршрутов Хориути-Тёмкина. Важность теории (или метода) маршрутов, позволяющей найти итоговые уравнения реакций, исходя из механизма процесса, а не только на основе материального баланса, видна из следующего примера.

Пример 1. Материальный баланс процесса описывается уравнением (1), а схема механизма – уравнениями (2 – 3):

(1)

(2)

(3)

(4)

где М – катализатор, МА и МВ – промежуточные вещества.

Если сложить стадии механизма (для стационарных или квазистационарных режимов), промежуточные вещества и катализатор исчезают и получается итоговое уравнение

(5)

С позиций стехиометрии и материального баланса уравнения (1) и (5) линейно зависимы. С позиций кинетических скорость реакции превращения А в В есть скорость по итоговому уравнению (5) и именно эта скорость R, как разность скоростей в прямом (R+) и обратном (R) направлениях (R = R+R) соответствует механизму (2 – 4). При [А], [В] >> [М]Σ и [М]Σ >> [МА], [МВ] ([М]Σ  [М]) получаем для стационарного или квазистационарного режимов

(6)

При равновесии (R+ = R) из (6) получается константа равновесия реакции (5) К = [А]2 / [В]2. Если возникает задача найти скорость прямой реакции, используя скорость обратной реакции и соотношение (7)

, (7)

где G – изменение изобарно-изотермического (химического) потенциала для итогового уравнения в ходе реакции, то для записи G также следует использовать уравнение, вытекающее из механизма, в данном случае, уравнение (5). Соотношение (7) справедливо только для одномаршрутных реакций.

Напомним определения маршрута реакции. Маршрутом реакции называется такая последовательность стадий, входящих в механизм сложной реакции, которая при сложении уравнений стадий, умноженных на особые стехиометрические числа стадий νj, даёт итоговое уравнение, не содержащее промежуточных веществ (интермедиатов) – важнейших участников механизма сложной реакции.

Маршрутом реакции называется также и вектор, компонентами которого являются стехиометрические числа стадий νj. Для механизма (2 – 4) таким вектором являются набор из трёх компонент ν2 = 1, ν3 = 1, ν4 = 1: = (1, 1, 1). Другой набор стехиометрических чисел = (0.5, 0.5, 0.5) даёт уравнение А = В, но как мы видели выше, такое итоговое уравнение противоречит кинетике стационарного процесса.

Число линейно-независимых маршрутов определяется по уравнению Хориути (8)

P = SI + W, (8)

где I – общее число интермедиатов, W – число независимых линейных законов сохранения (число линейных связей между интермедиатами) NI = IW. Очевидно, что NI = rank BX, где BX – матрица стехиометрических коэффициентов для интермедиатов (BX – блок стехиометрической матрицы механизма ВМ).

Для каталитических реакций с одним типом катализатора (или активных центров) W = 1, т.е. имеется один стехиометрический закон сохранения – материальный баланс по катализатору. В случае двух катализаторов, участвующих в механизме реакции, W = 2.

Для нахождения векторов стехиометрических чисел ,т.е. матрицы Г, решается система уравнений

(9)

Для решения системы (9) используем только линейно-независимые столбцы матрицы ВХ и один вектор из матрицы Г. Например, для двухмаршрутного каталитического процесса с катализатором М и первым интермедиатом Х1 имеем матрицу ВХ (rank BX = 2) S = 4 и вектор .

Получим 2 уравнения:

(10)

Для решения системы двух уравнений с четырьмя неизвестными разделим переменные на независимые, значения которых задаём, и зависимые

. (11)

При таком разделении системы уравнений следует проверить, чтобы определитель левой части D ≠ 0, иначе система не будет иметь решения. Для удобства нахождения значений ν1 и ν2 (при заданных ν3 и ν4), систему (11) приводят к единичному базису (метод Жордано-Гаусса) так, чтобы каждое уравнение слева имело одно неизвестное. Так, сложив уравнения в системе (11), получим ν2 = ν3 + ν4 и система (11) примет вид (12)

(12)

Задавая ν3 = 1 и ν4 = 0, получим ν1 = 1 и ν2 = 1, т.е. для первого маршрута. При ν3 = 0 и ν4 = 1 ν1 = 0 и ν2 = 1 и для второго маршрута. При ν3 = 0 и ν4 = 0 все решения будут нулевыми.


Пример 2. Рассмотрим пример нелинейного механизма.

(13)

Здесь одно линейно-независимое промежуточное соединение Х (NI = 1), 2 стадии (S = 2) и один маршрут Р = 2 – 1 = 1. Матрицу стехиометрических коэффициентов интермедиатов ВХ запишем вектором-строкой . Поскольку , умножим вектор-строку на вектор столбец . Получим одно уравнение

ν1 – 2ν2 = 0, (14)

которое имеет одно линейно-независимое решение. Задав ν1 = 1, получим ν2 = 0.5. При ν1 = 2 ν2 = 1 и т.д. Если при сложении стадий (1) и (2) (для исключения Х из итогового уравнения) умножим стадии (1) и (2) на наборы 1 0.5 или 2 1, получим итоговые уравнения, соответственно, маршрутов N(1) и N(2):

N(1) А = 1/2 Р

N(2) 2А = Р

Очевидно, что ΔG(Р) (по маршруту N(Р)) определяется уравнением (15)

(15)

В соответствии с уравнением (7) для ΔG(Р) и для ΔGj получаем:

(16)

где –скорости элементарной стадии в прямом и обратном направлениях.

Для маршрута N(1):

(17)

Для маршрута N(2):

(18)

Примем стадию (1) механизма (13) в качестве лимитирующей, а стадию (2) – квазиравновесной (). Тогда при равновесии брутто-процесса () получим из уравнения (17) константу равновесия итогового уравнения для маршрута N(1)

,

а из уравнения (18) – константу равновесия маршрута N(2)

.

Такие уравнения для К(1) и К(2) получим и в случае лимитирующей второй стадии.

Если кинетические уравнения получены экспериментально, итоговые уравнения выбираются уже не произвольно. Так, например, для механизма (13), если R+  [A] (стадия (1) лимитирующая), итоговое уравнение, которое получится при равновесии, будет уравнением N(1). Если R+  [A]2, итоговое уравнение N(2). Поэтому для определения скорости R- по известной R+ (и наоборот) следует использовать соответствующие кинетике итоговые уравнения. Таким образом, кинетика реакции в случае нелинейного механизма может ограничивать выбор маршрута.

Для обратимых стационарных и квазистационарных процессов с линейными механизмами нет ограничений при выборе базиса маршрутов и итоговых уравнений.. Однако итоговое уравнение, как мы видели в случае 2А = 2В, не должно противоречить кинетическому уравнению, следующему из механизма реакции. Для механизмов с необратимыми стадиями формально также можно использовать любые наборы , включая и отрицательные νj для необратимых стадий. Вместе с тем, в согласии с физическим смыслом целесообразно выбирать такие базисы маршрутов, чтобы и маршрут и скорость по маршруту относились к термодинамически и кинетически разрешенному направлению реакции (направление необратимых стадий).

Для нелинейных одномаршрутных механизмов, имеющих лимитирующую стадию, можно получить выражения для скорости лимитирующей стадии в прямом и обратном направлениях, но в этом случае выбор итогового уравнения будет определяться природой лимитирующей стадии.

Получив матрицу Г, найдём итоговое уравнение, т.е. матрицу стехиометрических коэффициентов итоговых уравнений ВР,

или

и уравнения, связывающие скорости по веществу RN и скорости по маршруту RP

.

Поскольку , получим или . Домножив обе части полученного матричного уравнения слева на ВN, получим уравнение (19)

ГRP = Wj, (19)

называемое условием стационарности стадий Хориути - Тёмкина. Это уравнение устанавливает связь между скоростью стадии и скоростью по маршруту и показывает, как стадии механизма перераспределяются по маршрутам. Кроме того, уравнение (19) можно использовать и для вывода уравнений для скоростей Ri и RP (аналогично методу Боденштейна), поскольку система (19) содержит S уравнений и S неизвестных (S = NI + P). Условие стационарности стадий (19) эквивалентно условию Боденштейна

. (20)

Из (20) и (19) получаем уравнение (9), используемое для нахождения базиса маршрутов

.


Пример 3. Механизм гидрирования этилена (21) на поверхности твердого металлического катализатора опишем последовательностью четырех элементарных стадий:

(21)


NI = rankBX = 2 (есть один закон сохранения, ). Следовательно, P = SNI = 2. Найдем матрицу Г. Для этого запишем систему уравнений . Возьмем два независимых столбца (Z, ZH2) (см. уравнения (10 – (12))



Задавая 3 и 4, получим два вектора j для двух маршрутов, т.е. матрицу Г:


Зная Г, найдем BP и итоговые уравнения маршрутов BP = ГTBN.



Итоговые уравнения для обоих маршрутов одинаковы

  1. H2 + C2H4 = C2H6

  2. H2 + C2H4 = C2H6

В этом случае

Поскольку стадия механизма (4) обратима, можно взять другую комбинацию маршрутов:

Получим другую матрицу BP:

и новые итоговые уравнения:

I) H2 + C2H4 = C2H6

II*) 0 = 0

Второй маршрут (II*) называют пустым маршрутом. Скорость реакции по пустому маршруту не равна нулю. Это скорость перехода интермедиатов:

по циклической последовательности стадий. Скорости , , по пустому маршруту равны нулям. , , .

Ранг матрицы BP, т.е. базис QP итоговых уравнений, для маршрутов I и II равен 1 (QP = rankBP = 1). Во втором случае (I и II*) число ненулевых итоговых уравнений равно QP. Такой базис маршрутов называется “стехиометрическим базисом” маршрутов (число пустых маршрутов равно PQP).

На данном множестве реагентов и продуктов мы имеем максимальный базис итоговых (брутто) реакций по стехиометрическому правилу Гиббса

, (22)

где N – общее число участников, Н – атомная матрица. Сравнение Qmax с базисом итоговых уравнений маршрутов QP дает неравенство:

QmaxQP, (23)

при этом, QPP, QmaxP.

В рассмотренном выше примере №1 Qmax = 1, QP = 1, Р = 2.


Пример 4. Рассмотрим более сложный случай пятистадийного цепного процесса пиролиза этана.

(1)

(2)

(3)

(4)

(5)


rankBX = 3 P = SNI = 5 – 3 = 2

Произведение дает три уравнения:

Возьмем 4 и 5 в качестве независимых переменных и преобразуем систему уравнений:

Определитель левой части D  0. Задавая 4 = 1, 5 = 0 и 4 = 0, 5 = 1, получаем матрицу Г для Р = 2 и матрицу BP:


Случайные файлы

Файл
ref-15311.doc
105718.rtf
31142.rtf
154698.rtf
5646-1.rtf