Окисно-відновні реакції і електрохімічні процеси в гальванічних елементах. Електродні потенціали (166245)

Посмотреть архив целиком

Міністерство ХХХХХХХХХХХХХХХХХ

ХХХХХХХХХХХХХХХХХХХХХХХХХХХХХХХХХХХХХХХХХ





Кафедра ХХХХХХХХХХХ







Реферат на тему:


«Окисно-відновні реакції і електрохімічні процеси в гальванічних елементах. Електродні потенціали»









Виконавець:



Керівник:

















Луганськ, 2004


            1. ПЛАН



Вступ 3

1. Окислювально-відновні реакції 4

1.1. Напівреакції 4

2. Гальванічні елементи 4

3. Електрорушійна сила (е.р.с.) гальванічного елементу 6

3.1. Стандартні електродні потенціали 7

3.2. Окислювачі і відновлювачи 8

4. Мимовільність і ступінь протікання окислювально-відновних реакцій 9

4.1. Е.р.с. і зміна вільної енергії 9

4.2. Е.р.с. і константа рівноваги 9

4.3. Е.р.с. і концентрація 10

5. Гальванічні елементи, котрі застосовуються на практиці 11

5.1. Свинцева акумуляторна батарея 11

5.2. Сухий елемент 13

5.3. Ni-Cd батареї 13

5.4. Паливні елементи 14

Висновки 16

Список використаних джерел 17


  1. Вступ

Для проведення багатьох важливих хімічних процесів необхідна електрична енергія, інші ж процеси, навпаки, можуть дати її. Оскільки електрика відіграє важливу роль у сучасній цивілізації, цікаво ознайомитися з тією областю хімії, що називається електрохімією і розглядає взаємозв'язок, що існує між електрикою і хімічними реакціями [1].

Електрохімія – це розділ фізичної хімії, що вивчає властивості систем, що містять рухливі іони (розчинів, розплавів чи твердих електролітів), а також явища, що виникають на межі двох фаз (наприклад, металу і розчину електроліту) унаслідок переносу заряджених часток (електронів та іонів). Електрохімія розробляє наукові основи електролізу, електросинтезу, гальванотехніки, захисту металів від корозії, створення хімічних джерел струму й ін. Електрохімічні процеси також відіграють важливу роль у життєдіяльності організмів – передача нервових імпульсів – це теж електрохімічний процес [11].

Знайомство з електрохімією дозволяє одержати уявлення про такі різноманітні питання, як будова і дія електричних батарей, мимовільність протікання хімічних реакцій, електроосадження металів для одержання металевих покрить і корозія металів.

Оскільки електричний струм зв'язаний з переміщенням електричних зарядів, зокрема електронів, в електрохімії увага зосереджена на реакціях, у яких електрони переносяться від однієї речовини до іншої. Такі реакції називаються окислювально-відновними [9].


  1. Окислювально-відновні реакції

Як відомо, окислювання являє собою не щось інше, як підвищення ступеня окислювання (відщіплення електронів), а відновлення як зменшення ступеня окислювання (приєднання електронів). Якщо одна речовина приєднує електрони і тим самим відновлюється, то інша речовина повинна віддавати електрони і, отже, окислятися. Окислювання і відновлення повинні йти одночасно, одне з них не може відбуватися без іншого. Розглянемо, наприклад, реакцію між залізом і хлоридною кислотою:

0 +1–1 +2–1 0

Fe (тв.) + 2НCl (м.) FеСl2 (тв.) + Н2 (м.) (1.1)

Ступінь окислювання кожного елемента зазначена над його символом. Розглядаючи ступеня окислювання, зазначені в рівнянні, ми переконуємося, що залізо окисляється, у той час як HCl відновлюється.

Під час обговорення окислювально-відновних реакцій прийнято вважати речовину, що викликає окислювання, окислювачем. Окислювач має підвищену спорідненість до електронів і викликає окислювання інших речовин, відщіпляючи від них електрони. Оскільки окислювач приєднує електрони, він відновлюється. Аналогічна речовина, що викликає відновлення, називається відновлювачем. У реакції (1.1) HCl – це окислювач, a Fe – відновлювач. Речовина, відновлена в реакції, завжди є окислювачем, а речовина, яка окисляється – відновлювачем [1, 2].


    1. Напівреакції

Хоча окислювання і відновлення повинні відбуватися одночасно, часто зручно розглядати їх як окремі процеси. Наприклад, реакцію окислювання іона Sn2+ іоном Fe3+

Sn2+ (водн.) + 2Fе3+ (водн.) Sn4+ (водн.) + 2Fе2+ (водн.) (1.2)

можна уявити собі як сукупність двох процесів: 1) окислювання Sn2+, описуваного рівнянням (1.3), і 2) відновлення Fe3+, описуваного рівнянням (1.4):

Окислювання: Sn2+(водн.) Sn4+ (водн.) + 2е (1.3)

Відновлення: 2Fе3+ (водн.) + 2е 2Fе2+ (водн.) (1.4)

Такі рівняння, що описують тільки окислювання чи тільки відновлення, називаються напівреакціями. Як видно з рівнянь (1.3) і (1.4), число електронів, що втрачається в процесі окислювання, тобто в окисній напівреакції, повинно дорівнювати числу електронів, що здобуваються у відбудовній напівреакції. Якщо ця умова виконана і напівреакції записані стехіометричними повними рівняннями, при їхньому підсумовуванні виходить стехіометричне збалансоване повне рівняння окислювально-відновної реакції [1, 5].


  1. Гальванічні елементи

Частіше енергію, що виділяється в будь-якій мимовільній окислювально-відновній реакції, можна безпосередньо використовувати для виконання електричної роботи. Це здійснено в гальванічному елементі, що представляє собою пристрій, у якому перенос електронів відбувається по зовнішньому шляху, а не безпосередньо між реагентами.

Одна з таких мимовільних реакцій відбувається, якщо шматочок цинку помістити в розчин, що містить іони Cu2+. При протіканні цієї реакції блакитне фарбування розчину, характерна для іонів Cu2+ (водн.), зникає, і на поверхні цинку починає осаджуватися металева мідь. Одночасно відбувається розчинення цинку. Ці перетворення, показані на мал. 2.1, описуються рівнянням: Zn (тв.) + Cu2+ (водн.) Zn2+ (водн.) + Cu (тв.) (2.1)

На мал. 2.2 показаний гальванічний елемент, у якому використовується окислювально-відновна реакція між Zn і Cu2+, описувана рівнянням (2.1). Хоча експериментальний пристрій, показаний на мал. 2.2, складніше, ніж зображений на мал. 2.1, важливо переконатися, що в обох випадках мова йде про одну і ту ж саму хімічну реакцію. Головне розходження між цими двома експериментами полягає в тому, що на мал. 2.2 металевий цинк і Cu2+ (водн.) не знаходяться у безпосередньому контакті один з одним. Отже, Cu2+ може відновлюватися тільки в результаті перетіканню електронів по дроту, що з'єднує Zn і Cu (тобто по зовнішньому ланцюгу).

Два металевих елементи, що з'єднані зовнішнім ланцюгом, називаються електродами. По визначенню електрод, на якому відбувається окислювання, називається анодом, а електрод, на якому відбувається відновлення, називається катодом. У розглянутому прикладі Zn є анодом, а Cu – катодом:

Окислювання на аноді Zn (тв.) Zn2+ (вoдн.) + 2е

Відновлення на катоді Cu2+ (водн.) + 2е Cu (тв.)

Гальванічний елемент можна розглядати як пристрій, котрий складається з двох напівелементів, один із яких відповідає процесу окислювання, а інший – процесу відновлення. При окислюванні металевого цинку на аноді виникають вільні електрони. Вони перетікають по зовнішньому ланцюгу до катода, де відбувається їхнє поглинання в процесі відновлення Cu2+ (водн.). Угода про вибір знаків для електродів гальванічного елемента заснована на розгляді зовнішнього ланцюга. Електрони мимовільно переміщаються від негативного електрода до позитивного, отже, анод є негативним електродом, а катод – позитивним.

Під час роботи гальванічного елемента, зображеного на мал. 2.2, окислювання Zn приводить до появи додаткових іонів Zn2+ в анодному відділенні елемента. Якщо не існує способу нейтралізації їхнього позитивного заряду,

подальше окислювання припиняється. Подібно цьому відновленню Cu2+ викликає появу надлишкового негативного заряду в розчині в катодному відділенні. Принцип електронейтральності дотримується завдяки міграції іонів через «сольовий місток», що показаний на мал. 2.2. Сольовий місток являє собою U-образну трубку, що містить розчин якого-небудь електроліту, наприклад NaNO3 (водн.), іони якого не реагують з іншими іонами в гальванічному елементі, а також з матеріалами, з яких зроблені електроди. Кінці U-образної трубки закривають скловатою чи гелем, просоченим електролітом, щоб при перевертанні трубки електроліт не вилився з неї. При протіканні на електродах процесів окислювання і відновлення іони із сольового містка проникають в анодне і катодне відділення гальванічного елементу, щоб нейтралізувати заряди, що там утворяться. Аніони мігрують у напрямку до анода, а катіони – у напрямку до катода. Частіше в зовнішньому ланцюзі не протікає ніякого струму доти, поки іони не одержать можливість мігрувати через розчин з одного електродного відділення в інше і тим самим замикати електричний ланцюг [1, 9].


  1. Електрорушійна сила (е.р.с.) гальванічного елементу

Можна уявити собі, що в гальванічного елемента існує «рушійна сила» (чи «електричний тиск»), що переміщає електрони по зовнішньому ланцюгу елементу. Ця рушійна сила називається електрорушійною силою (скорочено е.р.с.) елементу; е.р.с. виміряється в одиницях електричної напруги (вольтах) і інакше називається напругою, чи потенціалом, гальванічного елемента. Один вольт являє собою е.р.с., необхідну для того, щоб заряд у 1 кулон придбав енергію в 1 Дж:






Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.