Способы получения и свойства бутилкаучука (165980)

Посмотреть архив целиком

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

МИНСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ

ФИЗИЧЕСКИЙ ФАКУЛЬТЕТ

КАФЕДРА ОРГАНИЧЕСКОЙ ХИМИИ












РЕФЕРАТ

НА ТЕМУ:

«Способы получения и свойства бутилкаучука»


Подготовил студент 4 курса

Физического факультета МНУ

Группы 4-Б ОКР

Дилиев Андрей Сергеевич

Проверила ст. преп. каф. органической химии

Петрушевская Н.К.




Минск-2008



Вступление


Сополимеры изобутилена с 2-5 % изопрена производят под торговой маркой «бутилкаучук». Присутствие двойной связи в молекулах «бутилкаучука» позволяет проводить его вулканизацию с целью улучшения механических свойств [1].



1. Бутилкаучуки. История создания


Впервые бутилкаучук был синтезирован Томасом и Спарксом в США в 1937 г., промышленное его производство за рубежом было освоено в 1941 г. В нашей стране промышленность выпускает бутилкаучук, начиная с 1956 г. [2].

В последние годы наметился интерес к модифицированным бутилкаучукам. Так, начиная с 1980 г., в Великобритании выпускается бромбутилкаучук, его производство освоено в Канаде, Бельгии, США. Во многих странах мира производится хлорбутилкаучук, ведутся работы по освоению других видов модифицированных бутилкаучуков.



2. Физико-химические свойства бутилкаучука и его применение


Бутилкаучук [3] – продукт сополимеризации изобутилена и небольшого количества изопрена:



Бутилкаучук – прозрачная белого или серого цвета малогазопроницаемая эластичная масса, обладающая хорошими электроизоляционными свойствами, стойкая к действию кислорода, тепла, света, сильно действующих химических реагентов. Применяют бутилкаучук для изготовления автомобильных камер, прорезиненных тканей, различных резиновых изделий, для футеровки химической аппаратуры и производства электроизоляционных материалов.



3. Способы получения бутилкаучука


Бутилкаучук производится во многих странах мира путём сополимеризации изобутилена с небольшим количеством изопрена (1-5 % (масс.)) под действием трихлорида алюминия в среде метилхлорида (или этилхлорида) при температуре около –1000 С. [2]

Высокомолекулярные полимеры на основе изобутилена и изопрена получают лишь при катионной полимеризации в условиях очень низких температур, порядка – 85 - -1000С. Температура процесса определяется типом применяемых катализаторов и растворителей.

Известно два промышленных процесса синтеза бутилкаучука. Первый, принятый во многих странах мира, состоит в сополимеризации мономеров в среде растворителя (метилхлорида или этилхлорида), не растворяющего каучук. Получаемая при дисперсия полимера в растворителе имеет более низкую вязкость, чем раствор каучука такой же концентрации, и поэтому удаётся применять повышенные концентрации мономеров в исходной шихте (22 – 35% (масс.)).

Второй способ получения бутилкаучука, родившийся в нашей стране, имеет много общих черт с типовыми процессами синтеза растворимых каучуков. Он состоит в полимеризации под действием алюминийорганических катализаторов в среде углеводородного растворителя (изопентана), растворяющего каучук. Хотя при этом не достигается высокая концентрация полимера в полимеризате (не более 12 % (масс.)) из-за его высокой вязкости, этот процесс имеет другие ценные преимущества перед суспензионным:

1) появляется возможность проведения процесса при более высоких температурах (от –70 до -900С);

2) возрастает время непрерывной работы полимеризатора до 10 суток и более по сравнению с одними сутками в суспензионном процессе;

3) облегчается регулирование молекулярной массы и ММР каучука и появляется возможность автоматизированного управления процессом.

При катионной сополимеризации изобутилена с изопреном первый значительно активнее. Так, при использовании AlCl3 и метилхлорида относительные константы сополимеризации составляют: r1 (изобутилен) r2 (изопрен)=0,40. Это приводит к тому, что при полимеризации в реакторе периодического действия концентрация изобутилена понижается быстрее, возрастает доля изопрена в смеси мономеров и появляются различия в интегральном и дифференциальном составах сополимеров. С увеличением содержания изопрена в реакционной смеси возрастает ненасыщенность полимера, но снижается его молекулярная масса, поэтому на практике дозировка изопрена в исходной смеси не превышает 4-5% от массы изобутилена.

Изопрен не образует микроблоков, а статистически распределён по длине цепи преимущественно в виде 1,4-транс звеньев; около 1% изопрена образуют 1,2- и 3,4-звенья.


3.1 Технология получения бутилкаучука в суспензии


В качестве катализатора используется AlCl3, активность которого существенно зависит от при растворителя и микропримесей протонодоноров. Так, органические алкилхлориды, примеси протонодоноров повышают активность катализатора, что не всегда желательно. Ускорение и без того очень быстрых процессов полимеризации приводит к местным перегревам и снижению молекулярной массы полимера. Поэтому иногда рекомендуют, напротив, введение небольших количеств веществ, способствующих снижению активности катализатора. Например, при введении в процесс Al(C2H5)2Cl связываются микропримеси воды, выступающей в роли сокатализатора, при этом снижается активность катализатора, менее вероятными становятся перегревы и наблюдается возрастание молекулярной массы.

Присутствие в системе микропримесей воды, хлороводорода (из-за гидролиза AlCl3), бутилхлорида приводит к заметному снижению молекулярной массы каучука. С одной стороны, наличие таких микропримесей должно быть строго нормировано, а с другой стороны, дозирование этих веществ можно использовать для регулирования молекулярной массы каучука.

В качестве регулятора молекулярной массы иногда применяют диизобутилен, но его регулирующее воздействие проявляется при существенном его содержании в шихте, что создаёт дополнительные трудности при регенерации возвратных мономеров и растворителя после дегазации каучука.

Основными примесями, сопутствующими изобутилену, являются нормальные олефины, из которых наиболее вреден 2-бутен, вызывающий снижение выхода полимера. Обычно используется изобутилен, содержащий не менее 99,7 % основного вещества и не более 0,2 % бутенов. Чем выше концентрация изобутилена, тем устойчивее и эффективнее протекает процесс сополимеризации.

Изопрен, содержащий примеси пиперилена и изоамиленов. Очищается пропусканием его паров над сухой щёлочью с последующей конденсацией.

Для очистки метилхлорида наиболее пригоден метод его обработки хлоридом алюминия, при этом связываются все примеси, способные взаимодействовать с катализатором. Концентрация основного вещества в растворителе – не менее 99,5 %, наличие диметилового эфира и хлороводорода не допускается.

Из прочих возможных примесей в составе мономеров и растворителя допускаются, % (масс.) не более:

Спирты (в изобутилене) 0,002

Карбонильные соединения (в изопрене) 0,0009

Непредельные соединения (в метилхлориде) 0,007

Вода (во всех реагентах) 0,002

Необходимая дозировка раствора катализатора определяется чистотой применяемых мономеров и растворителя. Как правило, при получении бутилкаучука расходуется 0,025 – 0,035 % хлорида алюминия от массы мономеров. Раствор катализатора готовят пропусканием очищенного метилхлорида через аппарат, заполненный гранулированным безводным хлоридом алюминия, при – 300С. Прим этом вследствие ограниченной растворимости хлорида алюминия в метилхлориде получается раствор, имеющий постоянную концентрацию катализатора 1% (масс.). Насыщенный раствор хлорида алюминия разбавляется в трубопроводе метилхлоридом до рабочей концентрации 0,1 % (масс.), охлаждается до –930С в этиленовом холодильнике и подаётся на полимеризацию. Все операции по приготовлению раствора катализатора осуществляется в атмосфере осушенного азота. Шихта приготовляется смешением осушенных и очищенных от вредных примесей изобутилена, изопрена и возвратной изобутилен-метилхлоридной фракции в соотношении, определяемом маркой выпускаемого каучука. После охлаждения до температуры –96 - - 980 С шихта подаётся в полимеризатор.

Все реакторы, применяемые в промышленности для получния бутилкаучука, однотипны и отличаются лишь отдельными конструктивными деталями. Они имеют цилиндрическую форму, снабжены центральной всасывающей трубой, в нижней части реактора находится циркуляционный насос. Вокруг всасывающей трубы расположено большое число периферических трубок меньшего диаметра или сплошное полое кольцо. Как центральная труба, так и периферические трубки, а также днище корпуса и крышка полимеризатора омываются хладагентом (испаряющимся этиленом). В верхней части реактора имеется переточная труба для выхода полимеризата.

Шихта и раствор катализатора непрерывно подаются в нижнюю часть реактора и поступают во всасывающие патрубки ступицы циркуляционного насоса. В результате происходит турбулизация потоков, способствующая лучшему теплообмену, а также создаётся направленное движение реакционной массы по циркуляционной трубе снизу вверх. Обратно, в нижнюю часть полимеризатора, реакционная масса поступает по периферическим трубкам. Определённое количество дисперсии полимера, равное количеству подаваемой шихты, непрерывно выводится из верхней части полимеризатора.

Реакция сополимеризации изобутилена с изопреном протекает очень быстро; уже при смешении шихты с раствором катализатора каждая капелька его обволакивается тонкой плёнкой полимера, и рост цепи осуществляется за счёт диффузии мономеров в образовавшуюся полимерно-мономерную частицу. Поскольку теплопроводность полимера невысока, температура внутри полимерно-мономерных частиц может быть значительно выше температуры реакционной среды, что приводит к снижению молекулярной массы сополимера. Поэтому важное значение приобретает быстрое и тонкое диспергирование раствора катализатора при смешении его с раствором мономера.


Случайные файлы

Файл
48177.rtf
7806-1.rtf
diplom.doc
89859.rtf
159398.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.