Синтез и свойства комплексов рения (IV) с некоторыми аминокислотами (165920)

Посмотреть архив целиком















Синтез и свойства комплексов рения (IV) с некоторыми аминокислотами




В.И.Бабаева, Н.С.Османов, У.А.Керимова ,

Р.А. Худавердиев

Институт химических проблем Национальной АН Азербайджана



Теоретическая часть


Предложены методы синтеза комплексных соединений рения (IV) c некоторыми аминокислотами состава [К(LH)][ReХ6], (LH)2[ReХ6], [ReL2Х2]H2O и (PyH)2[ReL1Х5] в различных средах. Методами химического, ИК-спектрального и термогравиметрического анализа установлено состав, строение полученных комплексов. Термогравиметрические исследование показали что конечном твердо фазовом продуктом термического разложения указанных соединений является металлический рений. Координационные соединения переходных металлов, с многодентатными лигандами в состав которых, входит одновременно несколько донорных атомов представляют собой как теоретический, так и практический интерес. Одним из таких полидентатных лигандов являются аминокислоты, содержащие донорные атомы кислород и азот. До настоящего времени исследование процессов комплексооброзовние различных металлов с органическими донорными основаниями, в том числе с аминокислотами являются одним из перспективных направлений неорганической и бионеорганической химий. Кроме того, так как многие из них обладают свойством летучести и могут быть использованы в качестве исходных соединений для получения высокочистых металлов и проводящих металлических покрытие в различных подложках, а также могут быт эффективными катализаторами во многих органических синтезах. Отметим, что в настоящее комплексы многих металлов с аминокислотами нашли широкие применение в области медицине для приготовлений различных лекарственных препаратов. Поиски литературных материалов показало, что для рения аминокислотные комплексы малоизученны и ограничиваются лишь несколькими сообщениями [3-5]. Поэтому цель настоящий работы явилась исследованием взаимодействие галогенидных комплексов рения (IV) с некоторыми аминокислотами в различных средах и изучение свойств полученных комплексов.

Экспериментальная часть


В качестве исходных продуктов в работе использовали гексагалогеноренаты М2[ReX6] (M=K+, NH4+, Py; X= Cl,Br) которые синтезировали по известной методике описанной в [2] восстановлением перрената калия (КReO4) c йодидом калия в среде соответствующих галогеноводородных кислот.

Соединения состава (PyH)2[ReX6] получали следующим образом: Навеску гексагалогенорената калия К2[ReX6] растворяли соответствующей в ~ 15-20%-ной галогеноводородный кислоты и добавляли по каплям избыток свежоперегонного пиридина. Полученные продукты ярко зеленого (хлорное производное ) и коричневого ( бромное производное) света отфильтровали, промывали маточном раствором и несколько раз ацетоном затем сушили в эксикаторе над серной кислоте до постоянной массы.

Синтез [К(LH)][ReCl6] (1,2): Навески гексахлоррената калия и лейцина ((CH3 )2- CH -CH2- CH ( NH2 ) - COOH ) в мольном соотношении 1:1 ( 0.5г. 0.02 моль; 0.139г, 0.002 моль ) смешивали, растирали в фарфоровой чашке. Затем к этой желто – зеленой смеси добавляли по капле концентрированную соляную кислоту и постоянно перемешивая нагревали при 45 – 50 оС до получения сухого порошка желто – зеленого цвета. Далее полученный порошок растворяли в 20 – 25 мл диглиме (диметиловый эфир диэтиленгликоля), отфильтровали и маточный раствор выпаривали до получения сухого остатка, которого дополнительно сушили в эксикаторе над серной кислотой до установления постоянной массы. Последний хорошо растворяется в разбавленной соляной кислоте с образованием желто – зеленого раствора, мало в ацетоне и спирте, практически нерастворимо в неполярных растворителях.

Комплекс (LH)2[ReCl6] (3,4) получали обменной реакцией гексахлорорената калия с лейцином. Для этого реагенты в соответствующем мольном соотношении 1:2 смешивали и к этой смеси добавляли концентрированную соляную кислоту. Далее раствор нагревали в колбе с обратным холодильником при температуре 55 - 60 оС в течение 1.5 часа. Затем полученный желто – зеленый раствор отфильтровали и оставили на кристаллизацию. Выпавшие кристаллы зеленовато – желтого цвета отделяли, промыли маточным раствором, несколько раз эфиром и высушили в эксикаторе над серной кислотой до установления постоянной массы.

Синтез бромопроизводных проводили аналогично выше описанном методом.

Комплекс (PyH)2[ReL1Х5] (Х=Сl,Br) (5,6) получали следующим образом. В двугорлую колбу помешали 0.5 г. глицина, 10 мл безводного тетрагидрофурана и раствор (PyH)2[ReCl6] в 10 мл тетрагидрофуране, перемешивали 2 ч. выпавший осадок отфильтровывали, промывали тетрагидрофураном, перекристаллизовывали из смеси хлористого метилена и тетрагидрофурана.

Синтез [ReL2Cl2]H2O (7) осуществляли следующим образом. В двугорлою колбе на 100 мл, снабженною механической мешалкой, помещали навеску (PyH)2[ReCl6] растворяли в 20 мл диглиме при температуре 50 оС. После растворения к этому раствору добавляли навески лейцина и глицина предварительно растворенный в 15-20 мл этанола и 10 мл воды соответственно. Смесь с постоянном перемешиванием нагревали в 50 оС в 1.5-2 часов. Полученный желто-зеленый раствор фильтровали и оставили на кристаллизасию. Выпавший осадок промывали ацетоном. [ReL2Br2]H2O (8)синтезировали аналогичным способом.

Данные химического анализа полученных соединений приведены в таблице 1.


Результаты химического анализа полученных соединений.

Формула соединения

Цвет

Выход

%

Рассчитано, %

Найдено, %

Re

X

N

Re

Х

N

1

[К(LH)][ReCl6]

Желто-зеленый


32.63

37.37

2.46

32.48

37.20

2.51

2

[К(LH)][ReBr6]

Коричневый


22.22

57.35

1.67

22.12

57.23

1.72

3

(LH)2 [ReCl6]

Желто-зеленый


28.01

32.13

4.22

27.89

31.95

4.32

4

(LH)2 [ReBr6]

Коричневый


19.35

51.61

3.01

19.28

51.57

3.12

5

(PyH)2[ReLCl5]



29.88

28.51

6.75

29.76

28.47

6.81

6

(PyH)2[ReLBr5]



22.12

47.56

4.99

22.08

47.48

5.11

7

[ReL2Cl2]H2O



34.64

13.22

5.21

34.58

13.18

5.27

8

[ReL2Br2]H2O



29.71

25.56

4.47

29.68

25.51

4.49


( Х = Cl,Br)


ИК- спектры в области 400 – 4000 см‾1 снимали на спектрометре UR – 20. Образцы для сьемки готовили в виде суспензий в вазелиновом масле.

Термогравиграмма комплексов записывали на дериватографе Q – 1500 D система Паулик, Эрдей, Паулик.


Результаты и их обсуждение


Для выяснения характера координации лиганда с комплексообразователем были исследованы ИК спектры полученных комплексов.

Отметим, что спектры всех комплексов аналогичны и поэтому мы представили спектры только хлоридных аналогов.

Комплексооброзование, как следовало ожидать, сопровождается существенными спектральными изменениями по сравнении со спектром аминокислоты. Так, в спектрах комплексов ионного типа наблюдается интенсивная полоса поглощения при 1755см‾1, относящаяся к валентным колебаниям неионизированной карбоксильной группы, а в спектре свободного лиганда полоса, характерная для карбоксильной группы, наблюдается при 1620 см‾1, что соответствует ее депроонированной форме. Такое резкое повышение частоты поглощения, вероятно, связано с протонированием аминогруппы, которое ликвидирует биполярный характер молекул аминокислоты и карбоксильная группа дает при этом обычное поглощение неионизированной COOH формы. Кроме того, в ИК спектрах комплексов и гидрохлоридных солей аминокислоты появляются новые интенсивные полосы при 1325 и 1260 см‾1 соответственно, отсутствующие в спектре свободного лиганда. Наличие этих полос также подтверждает, что карбоксильная группа неионизована и, вероятно, они связаны с валентными колебаниями C – OH связей карбоксильных групп.


Случайные файлы

Файл
50922.doc
132803.rtf
18497-1.rtf
74228.rtf
102963.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.