Кислотно-каталитические процессы в нефтепереработке и в нефтехимии. Решение обратной задачи кинетики статистическими методами (165873)

Посмотреть архив целиком

Решение обратной задачи кинетики статистическими методами


В рамках рациональной стратегии структура кинетической модели задается (для каждой гипотезы) и решение обратной задачи проводится для оставшихся не отклоненных моделей. Задача сводится к оцениванию констант (параметров модели) и к сравнению качества описания эксперимента различными моделями.

Более простой случай – оценивание констант для линейных моделей (в дифференциальной или интегральной форме), например,




Оба уравнения – линейные функции y = bx и константа b находится методом наименьших квадратов (МНК).

В случае нелинейных моделей типа уравнений (15) или (20) решается менее строгая задача нелинейного оценивания. Параметры модели перебираются так, чтобы обеспечить минимум функционала


. (24)


При этом решение является не единственным, т.е. возможно существование множества наборов констант (параметров) уравнения, одинаково хорошо описывающих эксперимент. Адекватность модели оценивается по критериям Фишера, а значимость параметров – по критерию Стьюдента.

При решении обратной задачи следует иметь ввиду и закоррелированность параметров, также не позволяющую получить единственный набор констант (кроме причин, связанных с особенностями поверхности функционала (24)). Существует проблема идентифицируемости параметров.

Пример. Рассмотрим простейшую схему каталитической реакции (схема Михаэлиса-Ментен)


(25)


В квазистационарных условиях


(26)


В этом простом случае очевидно, что определяемыми (идентифицируемыми) параметрами будут и . Этот случай неидентифицируемости называется локальной неидентифицируемостью.

Пример. Рассмотрим случай глобальной неидентифицируемости. При анализе нестационарной последовательной реакции



показано, что можно определить все три константы, но решение не является единственным. Рассчитанные значения [А]t и [B]t не изменяются, если и поменять местами.

Таким образом, априорный анализ кинетической модели для выяснения параметров, которые могут быть оценены, является важным этапом процедуры решения обратной задачи химической кинетики.

Кислотно-каталитические процессы в нефтепереработке и в

нефтехимии


Каталитический крекинг

Каталитическим крекингом называют совокупность различных превращений углеводородов, протекающих на кислотных катализаторах (в настоящее время – гетерогенных) с образованием компонентов авиационного и моторного (автомобильного) топлива из высококипящих фракций углеводородов.

Основные реакции:

  1. Деалкилирование (крекинг) парафинов



(2) Деалкилирование (крекинг) олефинов


(n = m + k)


(3) Деалкилирование алкилароматических соединений



(4) Ароматизация нафтенов



(5) Скелетная и позиционная изомеризация олефинов.

(6) Скелетная изомеризация парафинов


В современных процессах используют аморфные и кристаллические (цеолиты) алюмосиликаты Al2O3SiO2. Цеолиты бывают природные и синтетические. Общая формула цеолита


MxDy/2 AlmSinO2(m+n)·PH2O, x + y = m


где M и D – одно- и двухвалентные катионы. В настоящее время только X- и Y- синтетические цеолиты используются для крекинга углеводородов. Эти цеолиты близки природным цеолитам – мордениту (X) и шабазиту (Y). При общей формуле этих цеолитов


NapAlpSi192–pO384·gH2O


для X-цеолита P = 96 – 74, для Y-цеолита P = 74 – 48.

Кристаллическая структура цеолитов характеризуется сквозными порами одинакового диаметра (0.75 – 1.0 нм), превышающими размеры многих молекул углеводородов. При замене части ионов Na+ на ионы NH4+ и последующей прокалки на поверхности цеолита образуются сильные протонные центры



При отщеплении воды ( > 400оС) появляются апротонные кислотные центры Льюиса, локализованные на Al. Высококремнистые и термостабильные цеолиты ZSM-5 относят к очень сильным протонным кислотам (к сверхкислотам).

В основе теории механизмов реакций, протекающих в процессе каталитического крекинга, лежат представления об участии в стадиях механизмов ионов карбения и карбония и, таким образом, химия этих ионов и есть суть механизмов перечисленных выше процессов.


CH3+, R+ CH5+, RH2+

ионы карбения ионы карбония


На поверхности твердых кислотных катализаторов так же, как и в растворах, нет свободных ионов карбения R+. Такие частицы всегда сольватированы в растворах и переносятся на другие реагенты, освобождаясь от молекулы растворителя (как и H+).




На поверхности кислотных катализаторов можно представить аналогичный процесс “сольватации” (координации) иона карбения поверхностным оксидом



Координированный таким образом R+ аналогичен иону карбения в ионе алкоксония R3O+BF4 и может участвовать в реакциях с другими реагентами (олефинами, спиртами, аренами) аналогично реакциям алкоксониевых ионов в реакции полимеризации циклов (см. раздел 11). Ионы карбония могут находится в свободном состоянии, удерживаясь на поверхности за счет слабых водородных связей или за счет электростатических сил в виде ионных пар RH2+·X.

В целом механизм процессов крекинга парафинов, олефинов, скелетной изомеризации парафинов и олефинов, реакций деалкилирования алкиларенов является цепным с кинетической точки зрения. Все эти процессы включают стадии инициирования, зарождения активных центров R+ (Wi), стадии продолжения кинетической цепи с участием ионов карбения и карбония и стадии обрыва активных R+ (W0) за счет примесей в реакционной смеси. Добавки долей процента олефинов к чистому алкану резко ускоряют процесс каталитического крекинга.



Образование кокса на поверхности алюмосиликатных катализаторов (следствие глубокого дегидрирования полимеров) является основной причиной дезактивации катализаторов крекинга, наряду с обратимым отравлением сильно адсорбирующимися примесями и необратимым отравлением металлами, содержащимися в нефтяных фракциях.

Различные функции падения активности по времени обобщены в теории, учитывающей, как важный фактор, время проведения процесса и предполагающей параллельное протекание различных процессов, ведущих к отравлению катализатора, т.е. к уменьшению количества активных центров CS. Уравнение (1) не включает концентраций реагентов и ядов и является, таким образом, эмпирическим уравнением, но оно было успешно применено для большого числа реакций крекинга и дегидрирования

(1)


Если обозначить долю центров, сохранивших активность,  = CS/CS0, получим


(2)


Используют и более простую модель


(3)


Интегрируя (3), получаем (m  1)


, (4)


где G = (m – 1)·Kd·t, N = 1/(m – 1).

Если активность катализатора пропорциональна числу активных центров 


, (5)


подставив уравнение (4) в уравнение (5), получим зависимость степени превращения XA сырья А как функцию концентраций, температуры и характера дезактивации активных центров.

Рассмотрим подробнее реакции скелетной изомеризации парафинов и нафтенов.

Скелетная изомеризация парафинов


Устойчивость ионов карбения растет в ряду R+перв < R+втор < R+трет. Поэтому процессы скелетной изомеризации парафинов термодинамически выгодны. Например, реакция (6) экзотермична


кДж/моль (6)


и при 25оС в равновесии отношение концентраций tBu+ / 2 – Bu+  1010. Простейший механизм скелетной изомеризации парафинов включает 1,2-перенос метильных (алкильных) групп в первичном R+. Образование первичного R+ происходит различными путями. Главные пути – протонизация олефинов и отрыв H подходящим акцептором (апротонным центром, ионом металла, другим ионом R+, появившимся в системе из олефинов)



1,2-Перенос алкильной группы сопровождается 1,2-гидридным сдвигом в направлении образования более устойчивого иона R+.


Вместе с тем, 1,2-перенос алкильной группы не объясняет факты, установленные при изучении изомеризации меченого 13С бутана. Обнаружены два изомера и две пары изотопомеров:


Образование изомеров I и III нельзя объяснить 1,2-переносом CH3-группы. Механизм этих реакций объясняют с позиций образования ионов карбония. При 1,2-сдвиге метильной группы в первичном ионе карбения образуется ион карбония (IV), который можно рассматривать как продукт протонирования циклопропанового кольца (V):



При разрыве С12-связи образуются ионы карбения СH313CH2+CHCH3 и +CH213CH2CH2CH3, которые приводят к продуктам I и III



Относительные скорости взаимных превращений углеводородов в процессе скелетной изомеризации отражают более быстрое изменение положения третичного атома, чем превращения вторичного в третичный:


В реакциях крекинга парафинов основными продуктами являются низшие парафины, тогда как олефины (особенно С4 и С5) образуют полимеры, ароматические соединения и кокс. В процессе крекинга гексадекана обнаружено 60 углеводородов от С1 до С10. Условия крекинга и природа катализатора (сила кислотных центров, соотношение протонных и апротонных центров) влияет на состав продуктов.

В процессе крекинга циклопарафинов (нафтенов) образуются алифатические углеводороды и циклы меньшего размера, при этом на алюмосиликатных катализаторах обнаружено даже заметное дегидрирование циклопарафинов. Механизм дегидрирования пока-что не установлен. Механизм изомеризации циклов представляют следующей цепочкой превращений ионов карбения и карбония (или неклассических ионов карбения):



Реакции алкилирования


Реакции алкилирования – процессы обратные крекингу – занимают важное место в нефтехимии и в органическом синтезе. Реакции алкилирования используют для получения ценных компонентов моторных топлив, повышающих их октановые числа. Для получения алкилатов используют реакции алкилирования парафинов олефинами. Так, изобутан алкилируют изобутиленом и смесью изомерных бутиленов, а также пропиленом. Реакцию проводят в двухфазной системе – концентрированная H2SO4 (90 – 97%) - углеводороды в присутствии ПАВ (R4N+X, цетиламин, октиламин). Процесс является цепным и включает следующие типичные для кислотного катализа стадии. В концентрированных кислотах сольватация карбкатиона осуществляется молекулой кислоты


(7)


Сольватированный tBu+ взаимодействует со второй молекулой олефина с образованием димерного карбкатиона. Для упрощения изобразим схему реакций с участием свободных R+:


(8)


(9)


Карбкатион (VI) C8H17+ взаимодействует с изо-C4H10, отрывает от него Н и превращается в изооктан C8H18 (целевой продукт реакции). Нежелательный процесс – дальнейшее присоединение олефина с последующей полимеризацией.


Поверхностно-активные вещества заметно увеличивают скорость реакции (10), тем самым повышая октановые числа алкилатов. Катионоподобные ПАВ повышают реакционную способность R+, уменьшают его стабилизацию кислотной фазой и делают отрыв H от RH более эффективным.

Процессы алкилирования катализируются и другими кислотами (CF3SO3H, HF). В системе углеводород-HF-1%H2O процесс алкилирования протекает эффективнее и селективнее. Октановые числа алкилатов достигают 92 – 95. Предложен интересный механизм алкилирования изобутана пропиленом в присутствии HF.







Брутто-реакция представляет собой дегидродимеризацию изобутана с переносом 2 атомов водорода на пропилен:


(12)

С целью заменить процессы с жидкими кислотами исследуют возможность использования цеолитов для алкилирования парафинов олефинами. Показано, что в этом случае в процесс алкилирования вступает этилен. На Na-X цеолитах при замене части Na+ ионами РЗЭ получаются достаточно высокие выходы алкилатов (80 – 100оС, Р = 2 МПа).



Выход C8-продуктов в алкилате достигает 80%.

В случае еще более сильных кислот, например, сверхкислот HF-TaF5 с Н0 = –18.8 алкилировать удается метан


.


Среди процессов алкилирования рассмотрим две реакции, важные для органического синтеза – алкилирование бензола олефинами и алкилирование формальдегида олефинами (реакция Принса).

Алкилированием бензола получают 2 ценных полупродукта – этилбензол и изопропилбензол. Алкилирование проводят по Фриделю-Крафтсу в присутствии AlCl3, или на цеолитных катализаторах, которые до сих пор не используются в этом процессе в промышленности. Взаимодействуя с бензолом или с полиалкилбензолами AlCl3, HCl и H2O образуют “комплекс”, который и является катализатором реакции. Состав комплекса переменный – (ArH)x(H3O+AlCl4)y(HCl)z. Вероятно, что полиалкилбензолы сольватируют H+, образуя с ним -комплекс (или -комплекс)


(ArH·H)+Al2Cl7 (VII)

который также может переносить протон на олефин с образованием R+AlCl4. Реакция карбкатиона CH3CH2+ или (СН3)2СН+ с бензолом и приводит к реакции алкилирования ArH.



Рассматривают также возможность участия в процессе протонированного ArH (VII), однако такой механизм представляется менее вероятным,




Случайные файлы

Файл
128432.doc
3.doc
71277.rtf
55966.rtf
152797.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.