Квантово-химические правила отбора элементарных стадий (165863)

Посмотреть архив целиком

11



Квантово-химические правила отбора элементарных стадий


Любая термодинамически разрешенная реакция, в которой происходит незначительное перемещение ядер (близость минимумов энергетических термов) и мало изменяются электронные состояния (принцип наименьшего движения), и молекулярность которой не превышает 2, имеет шанс быть согласованным процессом, элементарной стадией. Однако, для того, чтобы величина была небольшой и реакция протекала с измеряемой скоростью, необходимо выполнение двух требований, вытекающих из квантово-химической теории. Эффективное взаимодействие двух частиц с достаточно низкой величиной барьера может происходить в случае, когда симметрия перекрывающихся молекулярных орбиталей (МО) будет одинаковой, а энергии этих МО будут близки. Например, бимолекулярная реакция (27)

H2 + I2 = 2HI (27)

с небольшим изменением координат ядер и валентных оболочек не является элементарным процессом (ЭС), поскольку запрещена по симметрии граничных МО. Рассмотрим подробнее некоторые квантово-химические подходы к проблеме реакционной способности.


Теория возмущений в приближении граничных МО


Из правила БЭП следует, что знание энергетического состояния исходных и конечных продуктов позволяет оценивать кинетические характеристики ЭС (вероятность реализации элементарного акта). Метод возмущения МО (МВМО), оперируя только граничными занятыми и свободными МО (ВЗМО, НСМО) и зарядами (на атомах в молекулах и на атомных орбиталях в МО) в исходных реагентах, позволяет в ряде случаев предсказать вероятность, направление и эффективность взаимодействия двух реагентов.

Чем эффективнее взаимодействие, тем ниже Еакт и тем выше вероятность согласованного (элементарного) акта.

Если энергии граничных орбиталей 1 и 2 близки, то энергия взаимодействия определяется резонансным (обменным) интегралом 12

(28)

где H – гамильтониан системы,  – элемент объема, в котором происходит перекрывание орбиталей. Величина 12 в этом случае определяет и величину расщепления новых МО 1 и 2 или энергию стабилизации  = 12.



Если энергии 1 и 2 различаются сильно, то величина  определяется не только 12, а зависит и от разности энергий 1 и 2 по уравнению (29):

(29)

где Е1 и Е2 – энергии низшей и высшей МО



Чем больше величина  , тем стабильнее образующийся аддукт, тем ниже Еакт его образования.

МВМО не дает оценки Е переходного состояния и Еакт. Рассчитывается лишь разница между полной электронной энергией реагирующей системы Е и энергиями исходных реагентов и (малое возмущение):

Е = Е, (30)

справедливое только для начальных участков координаты реакции. Только на больших расстояниях между реагентами не происходит смешения МО, нет межмолекулярного отталкивания и можно говорить о чистых МО исходных реагентов. Вместе с тем, такое приближение позволяет оценить наиболее вероятный путь реакции.

Энергию возмущения Е при взаимодействии реагентов S и Т (S и Т – молекулы или активные центры в молекулах) рассчитывают по уравнению (31):

(31)

В случае только двух граничных МО (например, молекул донора и акцептора) уравнение упрощается (32):

(32)

В уравнениях (31, 32) qS и qT – эффективные заряды на центрах S и Т, RST – расстояние между центрами в ходе взаимодействия,  – диэлектрическая проницаемость среды. Таким образом, первый член (возмущение 1го порядка) отражает энергию кулоновского взаимодействия. Второй член (возмущение 2го порядка) определяет энергию орбитального перекрывания и включает: ST – коэффициент, учитывающий заселенность электронами орбиталей 1 и 2, и – квадраты коэффициентов при атомных орбиталях центров S и Т волновой функции граничных МО 1 и 2, – квадрат обменного интеграла, Е1 и Е2 – энергии орбиталей 1 и 2. Разные случаи заселенности орбиталей 1 и 2 реагирующих частиц и коэффициент ST приведены ниже:

Число электронов на
граничных орбиталях

ST

2 + 2, 0 + 0

0 (нет перекрывания)

2 + 1, 1 + 0

1

2 + 0, 1 + 1

2 (самое сильное перекрывание)


Если Е1Е2 в знаменателе уравнения (32) мало, заселенность ST равна 1 и 2, симметрия орбиталей одинакова (12 > 0), геометрия орбиталей удобна для перекрывания (коэффициенты CS и CT имеют большие значения в одинаковых областях пространства) и второй член существенно больше первого, можно говорить об орбитально-контролируемой реакции.

Если Е1Е2 величина большая, второй член становится небольшим даже при больших CS и CT. Если при этом qS и qT также велики, говорят о зарядово-контролируемой реакции. Эти простые оценки полуэмпирическими методами МО ЛКАО позволяют определить (без расчетов ППЭ), в каком направлении (по каким центрам) пойдет та или другая реакция и можно ли ожидать высокой скорости от выбранной элементарной стадии. Естественно, что все соображения об оценке энергии Е относятся только к элементарным стадиям.

Предположим, что донорная молекула, типичный нуклеофил SCN реагирует с акцептором, имеющим НСМО. Если энергии ВЗМО донора (1) и НСМО акцептора (2) близки, реакция будет орбитально-контролируемой. Такая реакция будет протекать между молекулой акцептора и тем центром нуклеофила (донора), который обладает наивысшей плотностью заряда () на граничных орбиталях донора. Высшая занятая МО нуклеофила SCN 2 имеет вид:

2 = 0.74S + 0.33C – 0.59N

= 0.55 = 0.35 >

Поэтому реакция с акцептором пойдет через атом S

(33)

Если орбиталь акцептора лежит высоко и Е1Е2 велика, реакция контролируется зарядовым взаимодействием. В этом случае, первый (кулоновский) член в уравнении (32) будет больше для того центра нуклеофила, у которого выше qi. Для расчета qS и qN необходимо учесть коэффициент при этих центрах на всех орбиталях, т.е. кроме 2 нужно учесть и НЗМО 1

1 = 0.33S + 0.59C + 0.74N

qi рассчитывается по уравнению

qS = 1 – 2(0.332 + 0.742) = – 0.313

qN = 1 – 2(0.592 + 0.742) = – 0.7914

т.е. в анионе на атоме N эффективный отрицательный заряд выше |qN| > |qS| (заряд на атоме С, qС  0.1). Таким образом, в условиях кулоновского контроля нуклеофил SCN будет взаимодействовать с акцептором атомом азота

(34)

МВМО дал теоретическое объяснение ряду эмпирических правил и обобщений. В 1958 г Арланд, Чатт и Дэвис предложили классификацию комплексов металлов, разделив их на две группы (а) и (б). К группе (а) были отнесены ионы металлов (в наиболее распространенных степенях окисления), которые образуют наиболее устойчивые комплексы с лигандами, имеющими донорные атомы N, O, F. К группе (б) они отнесли ионы, образующие наиболее стабильные комплексы с лигандами, содержащими донорные атомы элементов третьего и последующих периодов (P, S, Cl, Br, J). Так, например, устойчивость галогенидных комплексов Zn2+ (группа (а)) и Hg2+ (группа (б)) меняется в следующих рядах:

Zn2+ F >> Cl > Br > I

Hg2+ I > Br > Cl >> F

При переходе к Hg2+ происходит обращение ряда устойчивости по сравнению с “обычным” рядом (Zn2+), согласующимся с простыми электростатическими представлениями.

Очевидно, что в случае первой группы ионов определяющим является зарядовый, а в случае второй группы ионов – орбитальный фактор. Аналогичные объяснения получили правило взаимодействия жестких и мягких кислот и оснований (Пирсон, 1963) и правило Корнблюма.

В терминах теории Пирсона взаимодействие жестких частиц (кислот и оснований, акцепторов и доноров) соответствует зарядовому контролю, взаимодействие мягких частиц – орбитальному контролю. Степень жесткости и мягкости акцептора (A) и донора (D) можно оценивать по различным критериям. Приведем величины орбитальных электроотрицательностей En(A) Em(D) (в эВ) по Клопману:


Акцепторы: (кислоты)

Al3+

Mg2+

Cr3+

Fe2+

H+

Na+

Cu2+

Zn2+

Cu+

Hg2+

6

2.42

2.06

0.69

0.42

0.0

-0.55

-1.0

-2.3

-4.6










Доноры:
(основания)

F

H2O

OH

Br

CN

SH

I

H

-12.18

-10.7

-10.45

-9.2

-8.78

-8.59

-8.31

-7.37


В приведенной таблице самая жесткая кислота – Al3+, самое жесткое основание – F. Самая мягкая кислота – Hg2+, самое мягкое основание – H.


Орбитальная симметрия и правила отбора


Общие правила отбора ЭС по симметрии МО в реагирующей системе с циклическим многоцентровым переходным состоянием сформулировали Р.Вудворд и Р.Хоффман – правила сохранения орбитальной симметрии в ходе согласованных реакций.

Если заполненные связывающие МО реагентов коррелируют по симметрии (имеют одинаковую симметрию) с заполненными связывающими МО продуктов реакции, такая реакция будет идти согласованно термически (как ЭС). В ходе такой реакции симметрия взаимодействующих орбиталей сохраняется вдоль координаты реакции по ППЭ. Если такой корреляции нет, согласованная реакция пойдет только фотохимически.

В простых молекулах анализ симметрии граничных орбиталей позволяет сделать заключение о возможности согласованной ЭС. Например, симметрии занятой -МО молекулы Н2 и свободной *-МО молекулы I2 не позволяют реализоваться циклическому переходному состоянию



Это же касается и разрыхляющей *-МО H2 и высшей занятой -МО I2. Граничные ВЗМО и НСМО двух молекул этилена имеют разную симметрию и не могут образовать 4-членного переходного состояния при протекании ЭС



Занятая -МО одной молекулы этилена



не может перекрываться синхронно со свободной *-МО второй молекулы. Симметрия этих МО различна (относительно плоскости, проходящей перпендикулярно связи С-С через ее центр). В реакции бутадиена с этиленом, НСМО C4H6 (1*-C4H6) имеет одинаковую симметрию с ВЗМО C2H4 и процесс протекает по согласованному 6-центровому механизму



Аналогично и для перекрывания *-C2H4 и НЗМО C4H6 (2-C4H6).

Запрещенными по симметрии как элементарные стадии являются реакции присоединения молекул H2, Cl2, HCl, HF, HCN к кратным связям олефинов и алкинов (через 4-членное циклическое переходное состояние).

Реакции нуклеофильного и электрофильного присоединения и замещения, протекающие через линейные переходные состояния разрешены по симметрии. Участие переходных металлов (d-орбитали и d-электроны) в ЭС снимает запреты по симметрии и делает реакции согласованного присоединения по кратным связям металлосодержащих фрагментов разрешенными ЭС.


, , ,


Разрешены по симметрии орбиталей также реакции присоединения молекул НХ к координированным атомом металла алкенам.

Правило сохранения 16-18 электронной оболочки Толмена в элементарных стадиях


Уже давно было отмечено (Сиджвик, 1929), что в стабильных комплексных соединениях общее количество электронов вокруг атома металла равно числу электронов ближайшего инертного газа. Это число электронов было названо эффективным атомным номером (ЭАН). В случае d-металлов число электронов в валентной оболочке металла, связанного с лигандами, должно быть равно 18 (d10s2p6). Такая оболочка и считается устойчивой. Например, Ni(CO)4: Ni0 d10, CO – 2-х электронный лиганд. Следовательно, 10 + 8 = 18. Для расчета числа электронов в комплексе металла необходимо сложить число электронов в валентной оболочке атома металла (или иона) и число электронов, предоставляемых нейтральными лигандами (или анионами). Для этого используют ковалентную и ионную модели химической связи. В первом случае комплекс включает ионы Mn+, X и нейтральные лиганды L, а во втором – атомы металла, нейтральные группы X (гомолитический разрыв связи MX) и нейтральные лиганды L. Например, в комплексе HMn(CO)5 в валентной оболочке Mn имеем для ионной модели:

H (2 эл) + Mn+ (6 эл) + 5CO (10 эл) = 18 эл.

для ковалентной модели:

H· (1 эл) + Mn0 (7 эл) + 5CO (10 эл) = 18 эл.

В таблице 2.1 приведены некоторые лиганды, их обозначения и количества электронов, предоставляемых металлу в рамках ковалентной и ионной моделей.


Таблица 2.1

Лиганды

Символ лиганда

Ковалентная модель

Ионная
модель

Me, Ph, H, Cl, OH, CN

X

1 эл

2 эл

CO, NH3, H2O, PR3, R2S

L

2 эл

2 эл

C2H4

L

2 эл

2 эл

H2

L

2 эл

2 эл

LX

3 эл

4 эл

3–C3H5

LX

3 эл

4 эл

3–C5H5

L2X

5 эл

6 эл

3–C6H6

L3

6 эл

6 эл