Ионно-парная хроматография (165820)

Посмотреть архив целиком

Ион-парная хроматография


Ион-парная хроматография давно находила применение в жидкостной хроматографии и экстракции для извлечения лекарств и их метаболитов из биологических жидкостей в органическую фазу. Как самостоятельный раздел ВЭЖХ ион-парная хроматография, называвшаяся также экстракционной, парно-ионной, хроматографией с использованием ПАВ, хроматографией с жидким ионообменником, стала развиваться с середины 70-х годов. Метод занимает промежуточное положение между ионообменной хроматографией и адсорбционной, распределительной или обращенно-фазной. Недостатки ионообменных материалов, а именно невоспроизводимость от партии к партии, меньшая активность и стабильность по сравнению с другими сорбентами и небольшой выбор наполнительного материала, исключающий изменение селективности за счет сорбента, привел к некоторому ограничению применения ионообменной хроматографии. В ион-парной хроматографии большинство этих недостатков можно преодолеть. Метод ион-парной хроматографии характеризуется универсальностью и обладает преимуществом по сравнению с классической ионообменной хроматографией, в котором активные центры фиксированы. Вследствие более быстрой массопередачи в ион-парной системе хроматографическое разделение более эффективно, чем на ионообменнике с фиксированными и активными зонами.

Ион-парную хроматографию используют для разделения образцов, содержащих как ионные, так и неионные соединения. Ее применяют в тех случаях, когда трудно или невозможно получить приемлемое разделение образца методом ионообменной хроматографии адсорбционной или обращенно-фазной. В некоторых случаях ионные соединения можно разделить на обращенной фазе, придавая им свойства неионных соединений (подавление ионов) с помощью буферного раствора с соответствующим рН, при котором равновесие смещается в сторону образования неионизированной формы. Полярные вещества, обладающие липофильными свойствами, делятся при этом на обращенной фазе как неполярные. Однако большинство наполнительных материалов колонок надежно работает только при рН=1,5–7,5. Исключение составляет партисил 5 ОДС, работающий при рН=1–8,5. В этом диапазоне рН сильные кислоты и основания ионизированы.

Попытки разделения сильных кислот и оснований методом подавления ионов оказываются неудачными из-за плохого удерживания веществ и асимметрии пиков. Соединения, остающиеся ионизированными в интервале рН=2–8, удовлетворительно разделяются методом ион-парной хроматографии, когда в подвижную фазу добавляют противоион, заряд которого противоположен заряду молекулы, и создается ион-парный комплекс, обладающий свойствами неполярного вещества. Если к ионному соединению, растворимому только в воде, добавить противоион, то образуется ионная пара, которая, обладая свойством растворяться в органической фазе, распределится между водным и органическим слоем. Возможна также адсорбция липофильной части противоиона в углеводородной фазе наполнительного материала. Очевидно, что катионы будут хорошо экстрагироваться анионами, и наоборот.

Таким образом, ионизированные молекулы находятся в равновесии и образуют ионную пару: растворенное вещество–противоион, причем все равновесия имеют концентрационные зависимости. В упрощенном виде распределительное равновесие может быть представлено в виде


В+вод + Р орг <=> (В+Р-) орг,


где В+ – протонированная форма основания, которое нужно экстрагировать; Р- – анион кислоты, который применяют для образования ионной пары.

Ионная пара В+Р – будет растворяться в полярной органической фазе, например в смеси спирта с хлороформом, а ионные формы будут растворяться в воде. Для определения ароматических сульфокислот применяют в качестве противоиона тетра-бутиламмоний, а для анализа хинина–сульфокислоты камфоры. В качестве противоиона обычно используют четвертичные или третичные амины, соли сульфокислот. Наиболее часто применяют тетраметил, тетрабутил, пальметилтриметиламмоний для анализа кислот, сульфированных красителей и третичные амины типа триоктиламина для анализа сульфонатов. Противоионами для анализа оснований являются соли алкил- и арилсульфокислот, перхлораты, пикраты.

Существует четыре варианта ионно-парной хроматографии:

  1. адсорбционная хроматография, когда ионные пары вымываются элюентом с силикагеля;

  2. нормально-фазная распределительная хроматография, когда вода, нанесенная на пористую подложку, является неподвижной фазой, органический растворитель–элюентом;

  3. обращенно-фазная распределительная хроматография с органическим растворителем в качестве неподвижной фазы и водой в качестве элюента;

4) обращенно-фазная хроматография, когда гидрофобный ион, образующий ионную пару, адсорбируется углеводородной частью неподвижной фазы. Иногда добавляют ПАВ, например цетилтриметиламмонийбромид (цетримид).

Ион-парную хроматографию применяют и для разделения амфотерных веществ. Когда ион-парную хроматографию применяют в нормально-фазном варианте в качестве противоионов, иногда используют ионы, способные к абсорбции света или к флуоресценции, для улучшения идентификации некоторых не поглощающих свет соединений. В этом варианте ион-парной хроматографии селективность системы изменяется за счет изменения полярности органической фазы. В табл. 3.4 приведены примеры использования ион-парной хроматографии при работе в режиме нормально-фазной хроматографии.

Однако наиболее часто применяют ион-парную хроматографию на обращенной фазе, при которой в качестве подвижной фазы используют водный буферный раствор и органический растворитель, смешивающийся с водой, обычно метанол или ацетонитрил. В подвижную фазу добавляют противоион, заряд которого противоположен заряду молекулы, а в качестве сорбента используют силикагель с химически привитой фазой, обычно С8 или C18. Иногда разделение осуществляют с применением несмешиваемой с водой механически удерживаемой фазы, например, бутанола. При разделении на обращенной фазе более стабильной, чем механически удерживаемая фаза, водные образцы могут непосредственно вводиться в колонку, что особенно важно для анализа биологических образцов. При этом нет необходимости в предварительной очистке, так как гидрофильные компоненты мгновенно вызываются из колонки. Градиентное элюирование проводят, изменяя концентрацию противоиона в подвижной фазе или меняя полярность растворителя. При изменении концентрации противоиона, который остается в неподвижной фазе, изменяется сила растворителя, а при изменении рН подвижной фазы изменяется селективность разделения.

От обычной обращенно-фазной хроматографии легко перейти к ион-парной на обращенной фазе, и наоборот.

Ион-парное разделение на обращенной фазе (табл. 3.5) может быть проведено несколькими методами:

  1. на привитой к матрице неподвижной фазе, состоящей из углеводородов;

  2. то же самое, но в качестве противоиона используют ПАВ;

  3. на неподвижной фазе, состоящей из механически удерживаемой органической жидкости;

4) на неподвижной фазе, содержащей жидкий ионообменник.

Важным условием проведения ион-парной хроматографии является стабильность системы. Это означает в случае механически удерживаемой жидкости несмешиваемость водной и органической фаз, что достигается четким термо-статированием и предварительным насыщением подвижной фазы неподвижной. При работе с нормальной фазой при введении противоиона в неподвижную фазу необходимо предотвратить его унос неподвижной фазой за счет образования ионных пар, покидающих болонку. Противоион в этом случае добавляют в образец до введения его в хроматограф или в подвижную фазу. Поскольку в ион-парной хроматографии работают с полярными веществами, склонными к образованию хвостов, следует помнить, что в этом случае желательно применить другую подвижную или неподвижную фазу, другой противоион. Необходимо, чтобы в ион-парной хроматографии при изменении концен-трации не изменялось значение k' образца, что может повлечь образование хвостов. Водная фаза должна иметь постоянную концентрацию лротивоиона и рН. Обычно используют цитратный или фосфатовый буферный раствор. Иногда противоион сам является буфером. В случае разделения при низких рН растворы сильных кислот обеспечивают достаточное буферное действие.

Интересно проследить роль противоиона в ион-парной обращенно-фазной хроматографии. Можно написать следующие уравнения для образца, имеющего анион и


k'=(Vs/Vm) E(c+), k'=(Vs/Vm) E (c-),


где Е–константа экстракции конкретной ион-парной системы; (с+) и (с-) – концентрации анионного и катионного противоиона.

При прочих неизменных условиях Е постоянна и, следовательно, повышение концентрации противоиона в подвижной фазе приводит к увеличению k' при разделении на обращенной фазе. В нормально-фазной ион-парной хроматографии k' также меняется за счет изменения концентрации противоиона в подвижной фазе. Значение k' может регулироваться типом противоиона, например, замена гептансульфокислоты пентансуль-фокислотой может изменить k' в 2–5 раз. Этот эффект ярко выражен при низких концентрациях противоиона. Крупные молекулы противоиона дают большие величины k' при ион-парном разделении на обычной фазе. Так, переход от тетра-этиламмония к тетрапентиламмонию позволил изменить k' на несколько порядков.

Способность различных анионов экстрагировать ион тетра-бутлламмония из воды в хлороформ является мерой эффективности этих противоионов (табл. 3.6).


Случайные файлы

Файл
18372-1.rtf
73470.rtf
9539-1.rtf
15615-1.rtf
164407.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.