Эндометаллофуллерены (referat_endo)

Посмотреть архив целиком

Московский государственный университет

им. М.В. Ломоносова


Факультет наук о материалах





Кареев Иван Евгеньевич



Тема реферата:


Эндометаллофуллерены”

















Москва 2001

Содержание


Введение…………………………………………………………………………………………3

Методы синтеза эндометаллофуллеренов…………………………………………………….5

Лазерное распыление ………………………………………………………………….5

Электродуговой метод………………………………………………………………….7

Другие методы синтеза эндоэдральных фуллеренов………………………………....9

Выделение и разделение эндометаллофуллеренов………………………………………….10

Экстракция из эндофуллеренсодержащей сажи……………………………………..10

Сублимация из эндофуллеренсодержащей сажи…………………………………….14

Разделение эндометаллофуллеренов………………………………………………… 15

Свойства эндометаллофуллеренов………………………………………………………...….18

Заключение……………………………………………………………………………………..22

Список литературы…………………………………………………………………………….23



Введение


Одним из наиболее замечательных достижений науки прошедшего века является открытие фуллеренов, удостоенное Нобелевской премии по химии за 1996 год, которую получили Гарольд Крото (Великобритания), Роберт Керл и Ричард Смолли (США). Фуллерены - это новая аллотропная форма углерода. Свое название они получили в честь архитектора Бакминстера Фуллера, создавшего геодезические дома-куполы из пяти- и шестиугольников. Фуллерен представляет собой полую внутри высоко симметричную структуру, замкнутая поверхность которой образована правильными многоугольниками из атомов углерода.

В начале семидесятых годов независимо друг от друга в теоретических работах советских химиков Д. Бочвара и Е. Гальперн и японского физика Е. Осава обсуждалась возможность существования полиэдрических кластеров углерода, и прогнозировались некоторые их свойства [1]. В 1985 году эти предположения были экспериментально подтверждены Р. Керлом, Г. Крото и Р. Смолли [2]. При исследовании масс-спектров паров графита, полученных при лазерном облучении твердого образца, авторы обнаружили пики, соответствующие массам 720 и 840. Они предположили, что данные пики отвечают индивидуальным молекулам С60 и С70 и выдвинули гипотезу, что молекула С60 имеет форму усеченного икосаэдра симметрии Ih, а С70 – более вытянутую структуру эллипсоидного типа симметрии D5h. Вслед за этим немедленно появилось сообщение [3], в котором на основании наблюдения в масс-спектрах паров графита, допированного атомами La, пика m/l=859=(720+139), был сделан вывод о возможности внедрения во внутреннюю полость сфероидной молекулы С60 атома лантана с образованием эндоэдрального комплекса La@C60. Оба эти предположения в дальнейшем блестяще подтвердились. В 1990 году В. Кречмером и Д. Хаффманом был предложен способ получения фуллеренов в макроскопических количествах. С этого момента начался "фуллереновый бум", а поток публикаций об их удивительных свойствах резко возрос.

Эндоэдральные углеродные кластеры (эндометаллофуллерены M@C2n), содержащие атомы металла внутри фуллереновой молекулы, являются производными фуллеренов и в настоящее время выделились в отдельную область научных исследований и представляют особый интерес. Образование подобных соединений наиболее характерно для молекулы фуллерена C82 с металлами 3-й группы (Sc, Y, La) и лантаноидами. Известны также эндометаллофуллерены и с другими углеродными кластерами: C60, C70, C76, C78, C80, C84 и др. [4-9]. Эндометаллофуллерены представляют собой совершенно новый тип углеродных кластеров, существенно отличающихся от полых фуллеренов. Атом металла, внедренный внутрь фуллереновой молекулы, значительно изменяет ее электронные свойства. В случае La@C82 три электрона от металла переходят на фуллерен, образуя комплекс La 3+@C82 3- (рис. 1
) [10].



Рис. 1. Эндометаллофуллерен La@C82 (15 атомов углерода из 82-х убраны для наглядности).


В отличие от полых фуллеренов, которые обладают выраженными акцепторными свойствами, для эндометаллофуллеренов помимо акцепторных свойств характерны и донорные. Эндометаллофуллерены могут содержать один или несколько атомов металлов внутри фуллеренового каркаса и быть парамагнитными или диамагнитными соединениями. Уникальная структура эндометаллофуллеренов и разнообразие их свойств в зависимости от внедренного металла и фуллерена вызывают большой интерес к ним в плане изучения их химических и физических свойств. Исследования эндометаллофуллеренов и их производных в последние годы значительно расширили горизонты наших надежд на новые технологии, в том числе и в лечении такой страшной болезни как СПИД. Самый сенсационный результат - возможность применения производных эндометаллофуллеренов для лечения вирусных заболеваний, вызываемых ВИЧ-инфекцией. Уже есть экспериментальные результаты о воздействии их на вирус ВИЧа при нетоксичности и хорошей переносимости в больших дозах животными [11]. Можно ожидать, что эндометаллофуллерены послужат основой для создания новых материалов с особыми свойствами: сверхпроводники, органические ферромагнетики, лазерные и сегнетоэлектрические материалы, фармацевтические и радиофармацевтические препараты и т.п. Однако эндометаллофуллерены до сих пор мало изучены. В литературе практически отсутствуют данные о их химических и физических. Главной причиной такого положения является ограниченная доступность эндометаллофуллеренов, что связано с проблемами их синтеза и выделения в значительных количествах.

Молекулы фуллеренов, в клетку которых заключены один или несколько атомных частиц (атомов или молекул), получили название эндоэдральных соеди­нений (или эндоэдралов). Для обозначения таких моле­кул используется формула Мmn где М — инкапсули­рованный атом или молекула, а нижние индексы m и n указывают на число таких атомов и атомов углерода в молекуле фуллерена соответственно [12]. Рекомендуемое IUPAC название для La@C82 звучит следующим образом “[82] fullerene-incar-lanthanum” и записывается в виде iLaC82 [13].



Методы синтеза эндометаллофуллеренов


Эндоэдральная молекула может быть получена двумя различными способами:

  • первый способ состоит в создании таких условий, когда уже в процессе синтеза фуллеренов некоторая доля молекул оказывается заполненной атомами или молекулами элемента, присутствующего в зоне синтеза;

  • второй способ синтеза эндоэдральных соединений основан на внедрение атомов или молекул внутрь углеродного каркаса уже готовых молекул фуллерена.



Лазерное распыление


Метод лазерного распыления был использован для получения эндометаллофуллеренов еще в первой работе [3]. Для образования эндоэдральных фуллеренов необходимо присутствие в высокотемпературной области определенного количества паров того элемента, который должен быть заключен внутрь углеродного каркаса. В первых работах это достигалось использованием специально приготовленного материала мишени, представляющего собой графит низкой плотности, вымоченный в водном растворе соли LaCl3. Поверхность графитового диска подвергалась воздействию импульсов сфокусированного лазерного излучения с длиной волны 532 нм, длительностью 5 нс. и энергией 30 – 40 мДж (рис. 2). После окончания лазерного импульса облучаемая поверхность обдувалась потоком гелия, который формировалась в импульсном сопле. Углеродный пар, содержащий также примесь паров лантана, уносился потоком гелия, и по мере остывания атомов углерода происходила конденсация, сопровождаемая образованием кластеров углерода. Полученный таким образом поток кластеров направлялся в камеру масс-спектрометра. Масс-спектры продуктов термического испарения материала мишени наряду с полыми фуллеренами С60, С70 и др. также содержали эндоэдральные фуллерены La@C60 и La2@C60.





Рис. 2. Схема установки лазерного испарения графита для получения фуллеренов и эндометаллофуллеренов.


Синтез эндоэдральных фуллеренов в микроколичествах был впервые осуществлен в работе [14], существенной особенностью, которой было использование в качестве лазерной мишени композитного материала, полученного прессованием La2O3, графитового порошка и смолы. Мишень помещалась в цилиндрическую, заполненную гелием, подогреваемую камеру. Как показали результаты масс-спектрометрического анализа, при лазерном облучении металлографитового материала в атмосфере гелия наряду с полыми фуллеренами образуются также эндоэдральные соединения типа La@C2n, где n30.

Метод получения эндоэдральных фуллеренов посредством лазерного воздействия на мишени из композитного материала не нашел в дальнейшем широкого применения, что связано в первую очередь с его весьма низкой производительностью, а также малым выходом эндоэдралов.



Электродуговой метод


Существенно более высокими показателями характеризуется электродуговой метод синтеза эндофуллеренсодержащей сажи. В этом методе используется традиционный способ синтеза фуллеренов, разработанный Кретчмером и Хафманом [15]. В результате термического распыления материала графитового электрода в электрической дуге, горящей в атмосфере Не, образуется сажа, содержащая до 20 % фуллеренов, главным образом С60 и С70. Добавление некоторого (небольшого), количества паров металла приводит к образованию эндоэдральных металлофуллеренов, содержание которых достигает 1,5 % от веса сажи [16].

Наиболее простой способ введения металлического пара в дугу основан на использовании композитного электрода (анода), изготовленного из графита с небольшой примесью порошка металла либо его соединение (оксида, карбида). В качестве электрода используется стержень с высверленным с торцевой части отверстием, заполняемым смесью аморфного мелкодисперсного графита с порошком металла, его оксидом либо карбидом. Содержание металла в материале анода обычно не превышает нескольких атомных процентов. При этом установлено, что выход эндоэдралов растет при введении в материал электрода карбидов металлов [17,18], а также, если богатый карбидами катодный осадок, образующийся в процессе дугового испарения металлсодержащего графитового стержня, периодически «дожигается» в результате смены полярности электродов.


Случайные файлы

Файл
27319.rtf
ANALIS.DOC
3001.rtf
22940.rtf
131911.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.