Химия платины и ее соединений (kursovik_platina)

Посмотреть архив целиком

Московский Государственный Университет им. М. В. Ломоносова


Химический факультет

Кафедра общей химии







Курсовая работа

Студента 2 курса 226 группы

Янюшина Александра Михайловича








ХИМИЯ ПЛАТИНЫ И ЕЕ СОЕДИНЕНИЙ





















Москва – 2002

ОГЛАВЛЕНИЕ


Введение 2

Основные свойства 3

Простые вещества 4

Соединения Pt (0) 5

Соединения Pt (II) 5

Соединения Pt (IV) 8

Соединения Pt (VI) 10

Заключение 12

Список литературы 13

































Введение


Платина – один из самых ценных благородных металлов, обладающий рядом важных свойств, благодаря которым используется не только в ювелирной промышленности, но и во многих отраслях промышленности. Использование платины во многих химических технологиях делает актуальным более глубокое исследование ее физических и химических свойств.

Платина - один из самых важных элементов из всего платинового ряда из-за максимальной среди них химической инертности, а также из-за ценнейших свойств платины как мощ­ного катализатора многих химических процессов.
































Основные свойства

Платина – серовато-серый металл, относительно мягкий, очень тягучий, ковкий, тугоплавкий. В особых условиях образует губчатую платину (с сильно развитой поверхностью), платиновую чернь (тонкодисперсный порошок) и коллоидную платину. Благородный металл – занимает последнее (самое электроположительное) место в электрохимическом ряду напряжений. Легко сплавляется с платиновыми металлами (кроме рутения и осмия), а также с Fe, Co, Ni, Cu, Au и другими, с трудом сплавляется с Sb, Bi, Sn, Pb, Ag. Химически весьма пассивный – не реагирует с водой, кислотами (за исключением «царской водки»), щелочами, гидратом аммиака, монооксидом углерода. Переводится в водный раствор хлороводородной кислотой, насыщенной Cl2. При нагревании окисляется кислородом, галогенами, серой, при комнатной температуре – тетрафторидом ксенона. Губчатая платина и платиновая чернь активно поглощают значительно количество H2, He, O2. В природе встречается в самородном виде (в сплавах с Ru, Rh, Pd, Os, Ir).

Платина Pt характеризуется следующими константами:

Атомная масса............................................... 195,09

Валентные электроны .................................... 5d96s1

Металлический радиус атома, им ..... ........... 0,138

Условный радиус иона, нм:

Э2+......................................................... 0,090

Э4+ ........................................................ 0,064

Энергия ионизации Э0 Э+, эВ ................. 8,9

Содержание в земной коре, % (мол. доли)... 5*10-8

Для платины наиболее характерна степень окисления +4. Известны также соединения Pt (VI). Для платины наиболее устойчивы координационные числа 4 (тетраэдр или квадрат) и 6 (октаэдр). Степени окисления элемента и отвечающие им пространственные конфигурации комплексов приведены в табл. 1.

Таблица 1. Степени окисления и структурные единицы платины

Степень окисления

Координационное число

Структурная единица

Примеры соединений

0

4

Тетраэдр

Pt(O2)[Р(С6Н5)3]2

+2

4

Тетраэдр


+2

4

Квадрат

[Pt(NH3)4]2, [Pt(CN)4]2-, [PtCl4]2-, [Pt(NH3)2 Cl2 ]°, PtO

+2

6

Октаэдр


+4

6

Октаэдр

Pt(NH3)6]4+, [PtCl6]2-, [Рt(NН3)2Сl4

+6

6

Октаэдр

PtF6

Платина относится к числу редких элементов, встречается в медно-никелевых рудах, а также в самородном состоянии в виде сплавов с небольшим содержанием других металлов (Ir, Pd, Rh, Fe, иногда Ni, Сu и др.). Важным источником платины металлов являются сульфидные полиметаллические медно-никелевые руды.


Простые вещества

В виде простых веществ платина — блестящий белый металл с серебристым оттенком, кристаллизуется в кубической гранецентрированной решетке.

Важнейшие константы Pt представлены ниже:

Пл., г/см3 ………………………………… 21,46

Т. пл., оС ………………………………… 1772

Т. кип., оС ………………………………… ~3900

Электрическая проводимость (Hg=1)…… 10

Hовозг,298 , кДж/моль …………………….. 556

Sо298 , Дж/(К*моль) ……………………… 41,5

о 298 Э2+ + 2е = Э, В …………………….. +1,19

По сравнению с другими платиновыми металлами платина несколько более реакционноспособна. Однако и она вступает в реакции лишь при высокой температуре (часто при температуре красного каления) и в мелкораздробленном состоянии. Получающиеся при этом соединения обычно малостойки и при дальнейшем нагревании разлагаются.

Для платины наиболее характерно поглощение кислорода. Большое значение платина имеет как катализатор окисления кислородом аммиака (в произвол HNO3), водорода (для очистки О2 от примеси Н2) и в других процессах каталитического окисления.

В электрохимическом ряду напряжений платина расположена после водорода и растворяется при нагревании лишь в царской водке:

0 +4

3Pt + 4HNO3 + 18НСl = ЗН2[РtCl6] + 4NO + 8H2O

При сплавлении с щелочами, цианидами и сульфидами щелочных металлов в присутствии окислителей (даже O2) платина переходит в соответствующие производные анионных комплексов.

Платина используется для изготовления коррозионностойкой лабораторной посуды, аппаратов и приборов химических производств, для термометров сопротивления и термопар, а также электрических контактов. Из платины изготавливают нерастворимые аноды, например, для электрохимического производства надсерной кислоты и перборатов. Платина применяются в ювелирном деле.


Соединения Pt (0)

Как и у других d-элементов, нулевая (а также отрицательная) степень окисления у платины проявляется в соединениях с лигандами -донорного и -акцепторного типа: СО, PF3, CN-. При этом при электронной конфи­гурации центрального атома d10 строение комплексов с лигандами сильного поля чаще всего отвечает структуре тетраэдра.

Для платины, как элемента VIII группы (при электронной конфигурации d8d10 ) из­вестны комплексы, в которых роль лигандов играет молекула О2, например Pt(O2)[Р(С6Н5)3]2 .

Молекула О2 — лиганд -типа (подобно CN-, CO, N2, NO). Его присоеди­нение к комплексообразователю реализуется за счет донорно-акцепторного и дативного взаимодействия М—О2 участием -, - и *-орбиталей молекулы O2.

Такие соединения по аналогии с нитрогенильными и карбонильными соединениями можно назвать оксигенильными. Оксигенильные соединения - хорошие передатчики кислорода и катализаторы; за счет активации О2 являются хорошими окислителями уже при обычных условиях. Так, Pt[Р(С6Н5)3]4 поглощает кислород:

Pt[Р(С6Н5)3]4 + О2 = Pt(O2)[Р(С6Н5)3]2 + 2Р(С6Н5)3

а образовавшийся Pt(O2)[Р(С6Н5)3]2 является окислителем, например:

0 +2

Pt(O2)[Р(С6Н5)3]2 + 2NO2 = Pt(NO3)2[Р(С6Н5)3]2

при гидролизе дает пероксид водорода.

Активация молекулярного кислорода за счет комплексообразования имеетбольшое биохимическое значение. Классическим примером является присоеди­нение кислорода к гемоглобину.


Соединения Pt (II)

Для Pt (II) типичны диамагнитные плоскоквадратные комплексы, что объясняется значительной величиной параметра расщеп­ления , как у любого d-элемента 5-го и 6-го периодов.

При большом значении в октаэдрическом комплексе два элект­рона оказываются на сильно разрыхляющих молекулярных *d-орбиталях. Поэтому энергетически выгодней становится потеря этих электро­нов и переход Pt (II) в степень окисления +4 либо перерож­дение октаэдрического комплекса в плоскоквадратный. Распределение восьми электронов на орбиталях плоскоквадратного комплекса оказы­вается энергетически выгоднее, чем на молекулярных орбиталях окта­эдрического комплекса. Сосредоточение восьми электронов на четырех молекулярных орбиталях определяет диамагнетизм комплексов плоскоквадратного строения.

Соединения Pt (II) интенсивно окрашены. Структурной единицей соединений Pt (II) является квадрат. Так, в кристаллах PtO (рис. 1) атомы Pt окружены четырьмя атома­ми кислорода по вершинам четырехугольника. Эти квадраты соединены сторо­нами в цепи, которые перекрещиваются под углом 90°. Аналогично построены кристаллы PtS.

Рис. 1. Структура PtO и PtS

Дихлорид платины имеет совершенно другое строение. Красно-черные кристаллы PtCl2 состоят из октаэдрических кластерных группировок Pt6Cl12.

Хлориды платины могут быть получены прямым синтезом:

Pt + Cl2 = PtCl2 (t = 500 0C)

Pt + 2Cl2 = PtCl4 (t = 250 0C)

Дихлорид PtCl2 можно получить и диссоциацией PtCl4, а также нагреванием платинохлористоводородной кислоты:

3О)2РtCl6*nH2O = PtCl2 + НС1 + (n + 2)Н2О + Cl2 (t > 300 0C)

Генетическую связь безводных хлоридов платины передает следу­ющая схема:

370 C 475 C 581 C 583 C


Случайные файлы

Файл
67598.rtf
177713.rtf
14718.rtf
30704-1.rtf
131975.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.