Синтетические волокна (165383)

Посмотреть архив целиком

Последние разработки в области химии синтетических волокон.

Последние достижения химической технологии позволяют надеяться на получение полых химических волокон в самом ближайшем будущем. Такая технология уже осваивается для использования новых материалов в мембранных технологиях.

Голландская химическая компания «DCM» в начале 80-х годов наладила выпуск нового полимерного сверхпрочного материала - полиэтиленового волокна. При испытаниях его прочность на разрыв оказалась раз в 10 выше, чем у стальной проволоки такой же толщины.

В 1985 году, согласно сообщению авторитетного журнала «Design News», была разработана технология выпуска сверхпрочного волокна, получившего название «Спектр - 900». Оно формируется из желеобразного высокомолекулярного полиэтилена с помощью центрифуг. Кроме высокой степени прочности, это волокно обладает высокой абразивной стойкостью, влагонепроницаемостью, лёгкостью. Поэтому из него можно сделать и ракетные корпусы, и сосуды высокого давления, и искусственные суставы, и паруса…

Метод получения сверхпрочных синтетических волокон значительной длины из карбида кремния разработал японский химик Сейси Ядзима. Эти волокна прочнее лучших сортов стали в 1,5 раза. Причём прочность материала не теряется даже при длительном нагревании до +1200˚С.

В 1983 году в мировой прессе появились сообщения о создании синтетической ткани, которая оставалась термостойкой при нагревании до + 1400˚С.

Ранее был известен синтетический органический материал, выдерживающий температуру до 10 тыс. градусов. Он был получен ещё в начале 60-х годов и вошёл в историю под названием плутон. Молекула его состояла из атомов углерода, водорода, кислорода и азота. В то же время плутон обладал малой прочностью, уступала капрону в 9-10 раз. Самое термостойкое волокно вырабатывается сегодня в промышленности под торговым названием кевлар.

Полиэфирные волокна типа лавсан имеют высокие показатели по светло -, плесене - и атмосферостойкости. К тому же этот синтетический материал обладает отличным показателем стойкости и не реагирует на органические растворители. Лавсану принадлежит ещё один рекорд. Его удельное электрическое сопротивление от 10 до 10 Ом·м, выше которого нет у всех других веществ. Именно эти показатели и «виновны» в том, что мировое производство волокон превысило 6 млн. тонн в год.

Повышенной атмосферостойкостью и наибольшей устойчивостью к действию сильных кислот обладают полиакрилонитрильные волокна. Они широко применяются в производстве ковров, мехов, брезентов, обивочных и фильтровальных материалов.

По плесенестойкости нет равных поликапроамидному волокну. А поливинилспиртовое и поливинилхлоридное волокна, нашедшие достаточное распространение в практике, отличаются от других синтетических материалов тем, что абсолютно не поддаются никаким разрушительным действиям микроорганизмов.

Совместными усилиями специалистов из Московского НИИ автотракторных материалов, Ивановского завода «Искож» и Ивановского НИИ плёночных материалов в середине 80-х годов был создан новый материал «Теза-М». Это – синтетическая ткань, помещённая между слоями поливинилхлоридной плёнки. Самое главное, что этот материал не боится ни огня, ни воды, ни сильных морозов. Из него не шьют, а сваривают различные изделия, в первую очередь тенты для грузовых машин «КамАЗ».

Наибольшим сопротивлением ударным нагрузкам и предельно низкой гигроскопичностью обладают полиамидные волокна. Ценность их повышается ввиду одновременно высокой прочности, эластичности и износостойкости. А полиундеканамидное волокно из этого класса полимеров имеет один из лучших показателей по электроизоляционности.

Французскими исследователями во главе с Ж.-М. Леном в середине 80-х годов были созданы электропроводящие материалы сверхтонкой структуры. Толщина этих тончайших проводников электрического тока в диаметре намного тоньше человеческого волоса. Длины молекулярной цепочки достаточно, чтобы ею пронизать весь двойной липидный слой мембраны. Подобные электронити на уровне молекулярного масштаба могут быть использованы в качестве элементов связи в микроэлектронике.

Наибольшую растяжимость из всех распространённых синтетических материалов демонстрирует полиуретановое волокно. Относительное удлинение его составляет 500-700%, то есть это волокно способно растягиваться подобно резиновым нитям, да к тому же имеет ещё более высокие показатели прочности, износостойкости, упругого восстановления и меньшую толщину. Поэтому оно незаменимо в производстве спортивной одежды, купальных, корсетных и других изделий.

Японские специалисты в 1982 году создали новое синтетическое волокно с необычными свойствами: сшитая из него одежда способна защищать человека от нейтронного излучения. Это достижение стало ответом прогрессивной научной мысли на создание в СССР и США нейтронной бомбы.

А спецодежда и технические ткани, изготовленные из другого синтетического волокна, предельно устойчивы к действию гамма-излучения. Это поликарбонатное волокно.

К ионизирующему излучению более всего устойчив поли–м-фениленизофталамид, который выпускают в промышленности под названием фенилон. Кроме того, этот материал – один из самых термически стойких. Поэтому он находит применение в производстве особых высокопрочных пластмасс и термостойких волокон.





Введение.

Химические волокна, волокна, получаемые из органических природных и синтетических полимеров. В зависимости от вида исходного сырья химические волокна подразделяются на синтетические (из синтетических полимеров) и искусственные (из природных полимеров). Иногда к химическим волокнам относят так же волокна, получаемые из неорганических соединений (стеклянные, металлические, базальтовые, кварцевые). Химические волокна выпускаются в промышленности в виде: 1) моноволокна (одиночное волокно большой длины); 2) штапельного волокна (короткие отрезки тонких волокон); 3)филаментных нитей (пучок, состоящий из большого числа тонких и очень длинных волокон, соединенных посредством крутки). Филаментные нити в зависимости от назначения разделяются на текстильные и технические, или кордные нити (более толстые нити повышенной прочности и крутки).

Историческая справка.


Возможность получения химических волокон из различных веществ (клей, смолы) предсказывалась ещё в 17-18 веках, но только в 1853 году англичанин Аудемарс впервые предложил формовать бесконечные тонкие нити из раствора нитроцеллюлозы в смеси спирта с эфиром, а в 1891 году французский инженер И. де Шардонне впервые организовал выпуск подобных нитей в производственном масштабе. С этого времени началось быстрое развитие производства химических волокон. В 1893 году освоено производство медноаммиачного волокна из растворов целлюлозы в смеси водного аммиака и гидроокиси меди. В 1893 году англичанами Кроссом, Бивеном и Бидлом предложен способ получения вискозных волокон из водно-щелочных растворов ксантогената целлюлозы, осуществлённый в промышленном масштабе в 1905году. В 1918-20 годах разработан способ производства ацетатного волокна из раствора частично омыленной ацетилцеллюлозы в ацетоне, а в 1935 году организовано производство белковых волокон из молочного казеина. Производство синтетических волокон началось с выпуска в 1932 году поливинилхлоридного волокна (Германия). В 1940 году в промышленном масштабе выпущено наиболее известное синтетическое волокно – полиамидное (США). Производство в промышленном масштабе полиэфирных, полиакрилонитрильных и полиолефиновых синтетических волокон осуществлено в 1954-60 годах.


Свойства.

Химические волокна часто обладают высокой разрывной прочностью (до1200 Мн/кв. м(120 кгс/кв.мм)), значительным разрывным удлинением, хорошей формоустойчивостью, несминаемостью, высокой устойчивостью к многократным и знакопеременным нагружениям, стойкостью к действиям света, влаги, плесени, бактерий, хемо -, и термостойкостью. Физико-механические и физико-химические свойства химических волокон можно изменять в процессах формования, вытягивания, отделки и тепловой обработки, а так же путём модификации, как исходного сырья (полимера), так и самого волокна. Это позволяет создавать даже из одного исходного волокнообразующего полимера химические волокна, обладающие разнообразными текстильными и другими свойствами (смотри таблицу №1). Химические волокна можно использовать в смесях с природными волокнами при изготовлении новых ассортиментов текстильных изделий, значительно улучшая качество и внешний вид последних.









Производство.

Для производства химических волокон из большого числа существующих полимеров применяют лишь те, которые состоят из гибких и длинных макромолекул, линейных или слаборазветвлённых, имеют достаточно высокую молекулярную массу и обладают способностью плавиться без разложения или растворяться в доступных растворителях. Такие полимеры принято называть волокнообразующими. Процесс складывается из следующих операций: 1) приготовления прядильных растворов или расплавов; 2) формования волокна; 3) отделки сформованного волокна.

Приготовление прядильных растворов (расплавов). Этот процесс начинают с перевода исходного полимера в вязкотекучее состояние (раствор или расплав). Затем раствор (расплав) очищают от механических примесей и пузырьков воздуха и вводят в него различные добавки для термо - или светостабилизации волокон, их матировки и т. п. Подготовленный таким образом раствор или расплав подаётся на прядильную машину для формования волокон.

Формование волокон заключается в продавливании прядильного раствора (расплава) через мелкие отверстия фильеры в среду, вызывающую затвердевание полимера в виде тонких волокон. В зависимости от назначения и толщины формируемого волокна количество отверстий в фильере и их диаметр могут быть различными. При формовании химических волокон из расплава полимера (например, полиамидных волокон) средой, вызывающей затвердевание полимера, служит холодный воздух. Его формование проводят из раствора полимера в летучем растворителе (например, для ацетатных волокон), такой средой является горячий воздух, в котором от толщины и назначения волокон, а также от метода формования. При формовании из расплава растворитель испаряется (так называемый «сухой» способ формования). При формовании волокна из раствора полимера в нелетучем растворе (например, вискозного волокна) нити затвердевают, попадая после фильеры в специальный раствор, содержащий различные реагенты, так называемую осадительную ванну («мокрый» способ формования). Скорость формования зависит скорость достигает 600-1200 м/мин, из раствора по «сухому» способу – 300-600 м/мин, по «мокрому» способу – 30-130 м/мин. Прядильный раствор (расплав) в процессе превращения струек вязкой жидкости в тонкие волокна одновременно вытягивается (фильерная вытяжка). В некоторых случаях волокно дополнительно вытягивается непосредственно после выхода с прядильной машины, (астификационная вытяжка), что приводит к увеличению прочности химических волокон и улучшению их текстильных свойств.


Случайные файлы

Файл
75889.rtf
175343.rtf
27553-1.rtf
90343.rtf
3588-1.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.