«Полимеры»

Оглавление

Гиганты органического мира — полимеры 2

Что такое полимеризация и как она происходит 4

Полиэтилен и его семейство 5

Самый стойкий, самый прочный. Тефлон 8

Каучук, резина и другие 9

Что такое поликонденсация 12

«Волшебная резинка» 12

«Дурацкая замазка» 16

Фенолформальдегидные смолы 19

Может ли стекло быть органическим 20

Список литературы 233



Гиганты органического мира полимеры


Среди изобилия самых разнообраз­ных по строению и свойствам орга­нических соединений есть особый класс полимеры (от греч. «поли»«много» и «мерос» «часть»). Для этих веществ прежде всего характерна ог­ромная молекулярная масса от де­сятков тысяч до миллионов атомных единиц массы, поэтому часто их ещё называют высокомолекулярными со­единениями (сокращённо ВМС).

К молекулярным гигантам относят­ся, например, важнейшие природные полимеры (белки, нуклеиновые кис­лоты, полисахариды), синтетические материалы (полиэтилен, поливинил-хлорид, каучук и т. д.). Поэтому ВМС играют важную роль и в биологиче­ских процессах, и в практической деятельности человека.

Органические полимеры постро­ены из элементарных звеньев мно­гократно повторяющихся и связан­ных между собой остатков молекул низкомолекулярных веществ (моно-меров). Длину макромолекул выра­жают средним числом звеньев моно­мера, которое называют степенью полимеризации.

Полимеры могут иметь линейное, разветвлённое и сетчатое строение. Если каждое звено мономера условно обозначить буквой М, то макромоле­кула линейного строения будет вы­глядеть так:

... —М—М—М—М—М—М—...

В этом случае каждое из элементар­ных звеньев связано только с двумя

соседними и образует неразветвлён­ную цепь. Основная цепь макромо­лекулы может иметь короткие от­ветвления, и тогда построенные по такому типу полимеры будут раз­ветвлёнными: R



... —М—М—М—М—М—М—...


R

В сетчатых (сшитых) полимерах длинные линейные цепи связаны друг с другом в единую сетку более короткими поперечными цепями.

Если молекула мономера несим­метрична (СН2=СН—Х, где Х за­меститель), могут образовываться н регулярные, и нерегулярные полиме­ры. В регулярном полимере происхо­дит присоединение либо «голова к хвосту»:

СН2—СНХ—СН2—СНХ—,

либо «голова к голове»:

СН2—СНХ—СНХ—СН2—.

Макромолекулы полимеров мо­гут быть построены из остатков раз­ных мономеров; ВМС такого типа на­зываются сополимерами. При этом в зависимости от способа чередования различных звеньев они также бывают регулярного и нерегулярного строения:

... —М—М—М—М—М—М...

регулярный сополимер

...ММ—М—М—М—М...

нерегулярный сополимер

По своему происхождению все МС делятся на природные биопо-полимеры (например, крахмал и целлюлоза) и синтетические (полиэтилен, полистирол и др.).

Природные полимеры синтезируются клетками растительных и животных организмов, а синтетические человек научился получать из про­ектов переработки природного газа, ^фти, каменного угля.

Полимеры могут быть кристаллическими или аморфными. Для кристаллизации высокомолекулярных веществ необходимо упорядоченное строение достаточно длинных участ­ков молекулярной цепи.

Высокомолекулярные соединения не имеют четкой температуры плавле­ния. При нагревании многие полиме­ры не плавятся, а лишь размягчаются, что позволяет формовать из них изде­лия методами пластической деформа­ции прессованием, выдавливанием, литьём. Такие полимеры называют пластическими массами (пластмасса­ми, пластиками). У пластмасс низкая плотность, они легче самых лёгких ме­таллов (магния, алюминия) и потому считаются ценными конструкцион­ными материалами. По прочности некоторые пластики превосходят чу­гун и алюминий, а по химической стойкости почти все металлы. Они могут быть устойчивы к действию во­ды и кислорода, кислот и щелочей.

Обычно пластмассы диэлектрики (не проводят электрический ток), и от­дельные их сорта известны как лучшие изоляционные материалы из всех ис­пользуемых в современной технике.


Что такое полимеризация и как она происходит


Одним из важных химических свойств непредельных углеводородов алкенов и диенов является способ­ность их молекул соединяться друг с другом в длинные цепи. Этот про­цесс происходит за счёт раскрытия двойных связей и называется полиме­ризацией:

nR—СН=СН2 -> — (СНК—СН2)n.

Полимеризация непредельных со­единений в зависимости от меха­низма может быть радикальной или ионной. Радикальную полимериза­цию вызывают вещества (они называ­ются инициаторами), которые при нагревании распадаются на свобод­ные радикалы. Присоединяясь к мо­лекуле мономера, они порождают новый радикал прообраз будущей макромолекулы полимера. Эта части­ца способна захватывать всё новые и новые молекулы, постепенно пре­вращаясь в гигантский радикал.

Радикальными инициаторами могут служить органические пероксиды R—О—О—R', азосоединения

R—N=N—R/, кислород. Радикальную полимеризацию вызывают ультрафио­летовое и y-излучение.

Обрыв быстро растущей цепи происходит при взаимодействии макрорадикала с молекулой, способ­ной превратиться в неактивный или малоактивный радикал. Это позволя­ет при проведении полимеризации использовать вещества, регулирую­щие рост цепи.

Ионная полимеризация начинает­ся с образования из молекул мономе­ра реакционноспособных ионов; со­ответственно такой процесс может быть катионным или анионным. Катионную полимеризацию проводят при очень низких температурах в присутствии неорганической кисло­ты, хлорида алюминия или бора. При этом промежуточной частицей будет макрокатион.

Если происходит захват растущим катионом аниона или образуется концевая двойная связь, то цепь об­рывается.

Катализаторы анионной полиме­ризации щелочные металлы, их амиды, металлоорганические соеди­нения; они превращают мономеры в анионы, из которых получаются макромолекулы полимера.

Мономеры сильно отличаются по своей способности к полимериза­ции. Одни полимеризуются сами да­же при хранении на воздухе (напри­мер, стирол); для других требуются радикальные инициаторы, для треть­их дорогие экзотические катализа­торы или очень жёсткие условия (вы­сокие температура и давление).


Полиэтилен и его семейство


Родоначальник ряда алкенов эти­лен оказался для химиков «крепким орешком» вплоть до 1933 г. учёным не удавалось его полимеризовать.

Первой была открыта радикальная полимеризация этилена и, как это часто бывает, обнаружили её случай­но. В 1933 г., проводя эксперименты по получению стирола из смеси бен­зола с этиленом при высоком давле­нии, исследователи выделили из про­дуктов реакции вязкую прозрачную массу первый образец полиэтиле­на. Через четыре года, в 1937 г., анг­лийские химики разработали первый промышленный способ производст­ва полиэтилена, а в 1946 г. начался выпуск полиэтиленовых бутылок.

Для осуществления радикальной полимеризации этилена в качестве инициатора используется кислород. Смесь этилена с кислородом, в кото­рой содержание кислорода составля­ет 0,01 %, нагревают до 200 °С под давлением 1000 атм, при этом полу­чается полиэтилен высокого давления.

Макромолекулы такого полимера имеют много разветвлений в цепи, и потому материал характеризуется малой степенью кристалличности и невысокой прочностью.

В 1954 г. Карл Циглер и Джулио Натта открыли новый металлоорганический катализатор, благодаря че­му им удалось осуществить ионную полимеризацию полиэтилена при ат­мосферном давлении и температуре 60 °С (о катализаторе Циглера Натты). Полимеризацию этилена при низ­ком давлении часто проводят в сме­си с высшими алкенами: бутеном-1; гексеном-1; 4-метилпентеном-1 и др. У полиэтилена этого вида в моле­кулах очень мало разветвлений, он регулярный, кристаллический и прочный.

Прослеживается любопытная зако­номерность: при высоком давлении образуется полиэтилен низкой плот­ности и прочности, а при низкомнаоборот. Ещё одно отличие: у поли­этилена низкого давления большая степень полимеризации: она достига­ет 300 000; а у полиэтилена высоко­го давления — 50 000.

Полиэтилен один из самых рас­пространённых синтетических по­лимеров. Это и всем известная поли­этиленовая плёнка прекрасный упаковочный материал, и не подда­ющиеся коррозии полиэтиленовые трубы, и лёгкая, удобная в обращении посуда.

Ближайший гомолог этиленапропилен. В 1955—1956 гг. Джулио Натте удалось получить полипропи­лен регулярного строения методом ионной полимеризации, используя комплексный катализатор на основе триэтилалюминия (С2Н5)3Аl и тетра-хлорида титана ТiCl4.

СН2—СН—СН2—СН—СН2—СН—

СН3 СH3 СН3


Этот родственник полиэтилена обладает ценными свойствами: у не­го высокая температура размягче­ния (около 170°С), повышенные жёсткость и прочность по сравне­нию с полиэтиленом. Благодаря этим свойствам, а также доступности ис­ходного мономера, полипропилен применяют при изготовлении трубопроводов, химической аппаратуры и различных предметов домашнего обихода.

При замещении одного из атомов водорода в молекуле этилена на бензольное ядро образуется новая «заго­товка» для получения полимероввинилбензол (стирол) СН2=СН—С6Н5.

Радикальная полимеризация сти­рола приводит к образованию нере­гулярного полистирола:

В таком полимере нерегулярные макромолекулы, содержащие объём­ные неполярные заместители, не мо­гут образовывать кристаллы. Поэтому полистирол легко плавится и раство­ряется во многих органических жид­костях, а при комнатной температуре находится в аморфном состоянии. При 100 °С полистирол размягчается, а при 185 °С превращается в вязкую жидкость.

Полистирол получил широкое рас­пространение из-за своей дешевизны и лёгкости обработки. Однако есть у него один серьёзный недостатокэто очень непрочный и хрупкий материал, в чём может убедиться каж­дый, наступив на корпус шариковой ручки. Прозрачные корпуса автору­чек, коробки для кассет и лазерных дисков, детские игрушки, сувениры и другие предметы, для которых не требуется высокой прочности ма­териала, все они изготовлены из полистирола.

При замене в этилене атома водо­рода на хлор образуется ещё один мономер винилхлорид СН2=СН—С1. Впервые его полимеризацию осуще­ствил в 1872 г. немецкий химик Эйген Бауман (1846—1896). Заслугой этого исследователя стала разработка спо­соба радикальной полимеризации винилхлорида в присутствии органиче­ских пероксидов. к

При этом получается регулярный по­лимер, образованию которого спо­собствует высокая полярность моле­кулы винилхлорида в процессе полимеризации ей выгодно подойти к растущему концу макромолекулы только одной стороной:

СН—СН2—СН—СН2


Сl Сl

Активное практическое использо­вание поливинилхлорида (сокращён­но ПВХ) началось сравнительно не­давно только с середины XX в. Проблема была в том, что чистый ПВХ обладает многими недостатками. При комнатной температуре он очень хру­пок и неэластичен. Кроме того, его трудно растворить или расплавить, а это сильно затрудняет переработку полимера. В 30-х гг. учёным удалось найти специальные вещества стаби­лизаторы, увеличивающие стойкость ПВХ к действию тепла и света. Новый материал пластифицированный поливинилхлорид получил широкое распространение. Сейчас из него дела­ют изоляцию для электрических про­водов здесь он вытеснил более го­рючую и менее химически стойкую резину. Дождевые плащи, игрушки, паркетные плитки, один из видов искусственной кожи вот далеко не полный список предметов повсе­дневного обихода, сделанных из «ста­рейшего» полимера ПВХ.


Самый стойкий, самый прочный. Тефлон


Ближайшие родственники полиэтилена, сходные с ним по строению, под­час сильно отличаются от него по свойствам и приятно удивляют учёных новыми ценными качествами.

Если заменить все атомы водорода в молекуле этилена на атомы фто­ра, то этилен превратится в тетрафторэтилен, полимеризацией которо­го химики-технологи получили первую фторсодержашую пластмассу (фто­ропласт).

Политетрафторэтилен, названный впоследствии тефлоном, по многим механическим, физическим, химическим свойствам, как оказалось, пре­восходит не только полиэтилен, но и все остальные известные полимеры. Этот материал безразличен к действию любых растворителей и имеет необычно высокую температуру размягчения, равную 327 °С. А разложение тефлона начинается при рекордной для полимеров температуре — 425 °С!

Тефлон обладает непревзойдённой химической стойкостью: он совер­шенно не горит, на него не действуют концентрированные кислоты и щёлочи, даже таким химическим агрессорам, как галогены, царская водка и фтороводородная кислота, тефлон «не по зубам». Недаром его образ­но назвали «алмазным сердцем в шкуре носорога».

Этот замечательный материал незаменим при изготовлении химиче­ской аппаратуры для агрессивных сред, негорючей электроизоляции, а так­же подшипников и деталей, не требующих смазки. А ещё тефлоновой плён­кой покрывают металлическую посуду и гладящую поверхность утюгов. В сковороде с таким покрытием никогда не пригорит еда, а к утюгу ни­чего не прилипнет. Так что благородный и невозмутимый тефлон по пра­ву считается пластмассой будущего.

Каучук, резина и другие


Помимо высокомолекулярных ве­ществ семейства полиэтилена суще­ствует огромный класс полимеров, получаемых из сопряжённых дие­нов: бутадиена-1,3; 2-метилбутадиена-1,3 (изопрена) и их аналогов.

В результате полимеризации этих непредельных углеводородов образу­ются высокомолекулярные вещества, называемые каучуками:

  1. натуральный изопреновый каучук

  2. синтетический бутадиеновый каучук

Природный каучук стал известен в Европе ещё в конце XV в. Первыми из европейцев его увидели участники второго путешествия Христофора Колумба в Америку (1493—1496 гг.). Тогда они узнали, что американские индейцы получают «слезы дерева» (на их языке «кау» означало «дерево», а «учу» «течь», «плакать») из млечно­го сока тропического растения гевея и используют его для изготовления обуви, мячей, небьющейся посуды. Однако в Европе в течение долго­го времени экзотический материал не находил никакого применения. Только в 1823 г. шотландский изобре­татель Чарлз Макинтош (1766—1843) предложил пропитывать ткань сме­сью каучука с органическим раство­рителем. В результате был получен не­промокаемый материал. Макинтош первым организовал производство таких тканей и пошив из них дожде­вых плащей. Правда, у этих плащей были весьма неприятные недостат­ки они прилипали к телу в жаркую погоду и трескались в холодную.


Случайные файлы

Файл
158459.rtf
147859.rtf
181656.rtf
ТОЭ-06 III.doc
115683.rtf