Оксисоединения (165275)

Посмотреть архив целиком

Под оксисоединениями понимают органические соединения содержащие в составе своей структурной формулы одну или несколько гидроксильных групп (OH). Таковыми являются все спирты и фенолы.

АЦИКЛИЧЕСКИЕ ОКСИСОЕДИНЕНИЯ

Спирты.

Спиртами называются соединения общей формулой ROH, где R любая алкильная или замещённая алкильная группа. Эта группа может быть первичной, вторичной или третичной; она может быть как ациклической, так и циклической; она может содержать двойную связь, атом галогена или ароматическое кольцо, например:

CH3

OH

CH3CCH3 H2C=CHCH2OH

Аллиловый спирт

OH циклогексанол

Третбутиловый

спирт

CH2OH CH2 CH2 CH2CHCH2

Cl OH OH OH OH

Бензиловый спирт этиленхлоргидрин глцерин

(хлорэтиловый спирт)

все спирты содержат гидроксильную группу (OH), которая является функциональной и определяет свойства, характерные для данного класса соединений. Строение R влияет на скорость, с которой спирт вступает в некоторые реакции, и иногда на характер реакции.

Одноатомные насыщенные спирты.

Классификация.

Спирты классифицируют на первичные, вторичные и третичные в зависимости оттого, с каким атомом углерода (связана гидроксильная группа). Атом углерода считается первичным, вторичным третичным в зависимости от числа связанных с ним других атомов углерода.

H R R


RCOH RCOH RCOH


H H H

Первичный вторичный третичный

Номенклатура.

Для названия спиртов по номенклатуре IUPAC выбирают наиболее длинную цепь, содержащую гидроксильную группу. Нумерацию начинают с того конца цепи к которому ближе находится эта группа. Принадлежность соединения к классу спиртов обозначается окончанием «ол». Между основой названия и окончанием ставят цифру, обозначающую атом углерода у которой стоит OHгруппа. Если имеются алкильные заместители, то название спирта начинают с цыфр(ы), указывающих (указывающей) положение заместителя (заместителей) в цепи, далее идёт название заместителей как радикалов.

Простейшие спирты можно называть по карбинольной номенклатуре, беря за основу название первого представителя спиртов, CH3OH “карбинол”. Название начинают с перечисления радикалов, замещающих атомы водорда, стоящие у углеродного атома, в метиловом спирте CH3OH, например:


OH OH

CH3 CH2OH CH3 CH CH3 CH3 C CH2CH3

Метилкарбинол диметилкарбинол

CH3

Диметилэтилкарбинол

Часто простейшие представители класса спиртов называют по рациоальной (радикальной) номенклатуре, по названию углеводородного радикала (см. таблицу).

Изомерия.

Изомерия спиртов аналогична изомерии галогенопроизводных. В случае спиртов кроме изменения строения углеродного скелета может изменяться положение OH группы.

Для соединения общей формулы C5H11OH=C5H12O существует семь изомеров:

OH OH


CH3CH2CH2CH2CH2OH CH3CHCH2CH2CH3 CH3CH2CHCH2CH3

Пентанол1 пентанол2 пентанол3

CH3 CH3 OH CH3 CH3


CH3CCH2CH3 CH3CHCHCH3 CH3CHCH2CH2OH CH3CH2CHCH2OH


OH

2метилбутанол2 3метилбутанол2 3метилбутанол1 2метилбутанол1

Физические свойства.

Спирты сильно отличаются по свойствам от углеводородов вследствие присутствия в их молекуле очень полярной гидроксильной группы. Спирты бесцветные вещества с плотностью меньше единицы.


Формула

Номенклатура



Т.пл.,C




Т.кип.,C


Растворимость

Г/100г

H2O



IUPAC


радикальная

CH3OH

CH3CH2OH

CH3CH2CH2OH

CH3CH(OH)CH3

CH3(CH2)2CH2OH

(CH3)2CHCH2OH


CH3CH(OH)CH2CH3


(CH3)3COH


CH3 (CH2)3CH2OH

CH3 (CH2)4CH2OH

CH3(CH2)5CH2OH

CH3(CH2)6CH2OH

CH3 (CH2)12CH2OH

Метанол

Этанол

Пропанол1

Пропанол2

Бутанол1

2метилпропанол1

Бутанол2

2метилпропанол2

Пентанол1

Гексанол1

Гептанол1

Октанол1

Тетрадеканол1

Метиловый

Этиловый

нПропиловый

Изопропиловый

нБутиловый

Изобутиловый


вторБутиловый


третБутиловый

нАмиловый

нГексиловый

нГептиловый

нОктиловый

нТетрадециловый



97

115

126

86

90

108


114

26


79

52

34

15

38

65

78

97

83

118

108


100

83


138

157

176

195




7,9

10,2


12,5




2,3

0,6

0,2

0,05

Такое отличие в физических свойствах между спиртами и многими другими классами органических соединений объясняется наличием в молекулах спиртов гидроксильной группы. В гидроксильной группе атом кислорода, проявляя электроакцепторные свойства, «стягивает на себя» электронную плотность от связанного с ним атома водорода, и у последнего образуется дефицит электронной плотности. В результате между атомом водорода гидроксильной группы и свободной электронной парой кислорода OHгруппы другой молекулы спирта возникает водородная связь, за счёт которой происходит ассоциация молекул спиртов:

R R R R

HO HO HO HO

Повышение температур кипения спиртов по сравнению с температурой кипения некоторых других классов органических соединений объясняется необходимостью введения дополнительной энергии на разрыв водородных связей перед переводом из жидкого в парообразное состояние. Энергия электростатической водородной связи около 5 ккал/моль (20,93*103 Дж/моль).[Для большинства ковалентных связей эта величина составляет 50100 ккал/моль (209,34*103 418,68*103 Дж/моль)].

Образование водородных связей между молекулами спиртов и воды причина хорошей растворимости первых представителей ряда спиртов в воде:

R

R H O H

HO HO H O

R

С увеличением массы углеводородного радикала в молекуле спирта уменьшается растворимость спиртов в воде и увеличиваются их температуры кипения (температуры кипения уменьшаются пи наличии разветвлений). Температуры кипения спиртов значительно выше, чем температуры кипения соответствующих углеводородов (это объясняется ассоциацией молекул спиртов водородными связями).

Методы получения.

Гидролиз моногалогенопроизводных.

В лабораторных условиях, для получения спиртов часто используют реакцию гидролиза галогенопроизводных водными растворами щелочей. Щёлочь используют для ускорения реакции и для связывания выделяющегося при гидролизе галогеноводорода, подавляя обратимость процесса:

RX + HOH ROH + HX

Где X:Cl, Br, I; например:

CH3Br + HOH NaOH CH3OH + NaBr + H2O

Бромметан метанол

Реакция может протекать по механизмам SN2 или SN1 в зависимости от строения исходного галогенпроизводного. Реакционная способность различных соответствующих галогенпроизводных в реакциях гидролиза уменьшается в ряду :

RI > RBr > RCl >> RF

Наиболее легко гидролизуется галоген у третичного атома углерода, труднее у вторичного и наиболее трудно у первичного.

Если у атома углерода, соседнего с атомом несущим галоген, имеется хотя бы один атом водорода, то при взаимодействии с водными растворами щелочей на ряду с гидролизом может протекать реакция дегидрогалогенирования (отщепления галогеноводорода):





OH


CH3CHCH3


Случайные файлы

Файл
48818.rtf
28990.rtf
14821.rtf
70808-1.rtf
11001-1.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.