Межпредметные связи в курсе школьного предмета химии на предмете углерода и его соединений (APP2)

Посмотреть архив целиком

Приложение 2

Тематическое планирование по теме “Подгруппа углерода”.


По программе курса химии для 8-11 классов средней общеобразовательной школы разработанной в лаборатории химического образования Института общеобразовательной школы РАО на данную тему отводится 7 часов.

Цели изучения данной темы:

  • Ознакомить учащихся с характерными свойствами простых и сложных веществ образованных элементами – неметаллами главной подгруппы 4 группы. Сформировать знания о кристаллических решетках, аллотропии, практическом применении веществ на примерах соединений углерода и кремния. Показать роль топлива в развитии экономики страны.

  • Развивать умения решать качественные задачи, а также расчетные химические задачи: определение массы или объема продукта реакции по известной массе или объему исходного вещества, содержащего примеси.

  • Расширить представления о взаимосвязи количественных и качественных изменений при сравнении состава и свойств оксидов углерода.

  • Сформировать знания учащихся по данной теме используя их знания из курсов физики, географии, биологии.

  • Показать важность взаимосвязей между предметами.

Тематическое планирование в приложении.


Рекомендации по теме “ Подгруппа углерода”

Материал данной темы подвергся довольно значительным сокращениям (всего отводится 7 часов). Не рассматриваются подробно сведения о метане. Однако при изучении химических свойств углерода необходимо обратить внимание учащихся на то, что соединения углерода с водородом весьма многочисленны. В природе смеси углеводородов образуют скопления нефти и природного газа. Это 2 важных вида топлива – сведения из курса географии.

Изучение неметаллов будет завершаться сравнением свойств водородных соединений неметаллов разных групп. Сравнение этих свойств можно провести в такой последовательности: учитель напоминает, какие соединения с водородом могут образовывать различные химические элементы, в каких из этих соединений водород – электроотрицателен, а в каких – электроположителен, каково строение этих соединений и их физические свойства. Внимание учащихся привлекается к тому, какие химические свойства проявляют водородные соединения неметаллов разных групп периодической системы Д.И. Менделеева. Отмечается, что водородные соединения 6-7 групп неметаллов, растворяясь в воде, образуют кислоты, водородные соединения азота и фосфора в тех же условиях обнаруживают основные свойства, а водородные соединения углерода и кремния ни кислотных, ни основных свойств в водном растворе не проявляют. Затем прослеживается, как изменяется сила кислот и оснований, образуемых водородными соединениями неметаллов, при перемещении в подгруппах периодической системы Менделеева сверху вниз и слева направо и даются пояснения этим изменениям. Здесь уже можно привлечь для объяснения закон Кулона, изученный к этому времени в курсе физики.

Рекомендуется также пошаговая подача учебной информации для класса со средним уровнем усвоения материала. Данная система предлагает разъяснения темы небольшими порциями, закрепление каждой с помощью упражнений или в ходе выполнения учащимися самостоятельной работы.

1 шаг – Обратить внимание на то, что химические элементы главной подгруппы 4 группы стоят на границе с металлами. Напомнить, что химические элементы одной и той же подгруппы имеют общее и различное в свойствах, обусловленное их строением. Дается сравнительная характеристика химических элементов подгруппы углерода. Отмечают характер соединений.

2 шаг – Рассматривают свойства простых веществ образованных углеродом. Углерод – один из важнейших химических элементов живых организмов. Изучение аллотропных видоизменений: при характеристике свойств аллотропных видоизменений углерода имеется возможность привлекать знания знания, полученные на других уроках, например: из курса физики об электропроводности графита и использовании его в производстве электродов; из курсов биологии о том, что элемент углерод – основа жизни, он входит в состав белка; из курса географии о месторождениях графита и алмазов, атмосфера и углекислый газ.

3 шаг – Физические свойства углерода, можно изучить в процессе просмотра кинофильма “Углерод” и в ходе работы с раздаточным материалом.

4 шаг – Изучение химических свойств, сопровождающее демонстрацией химических опытов.

5 шаг – На основе изученных свойств делается вывод о применении. Доказывается схема – главная идея химии:

свойства


строение применение

1 шаг – Дедуктивный подход – на основе положения в ПСХЭ, строения атома отсюда структура вещества.

2 шаг – Повторяем материал о аллотропных видоизменениях углерода в связи со строением атома (соединяются атомы ковалентной неполярной связью, образуя простые вещества состава Cn., где n – очень большая временная величина).

3 шаг – Исторический подход – постоянные поиски искусственного способа получения алмаза. Начались в 1881 году – английский ученый Ханней. В СССР осуществлен в 1961 в институте физики высоких давлений по технологии Верещагина. Карбин – состоит из линейных полимеров.

4 шаг – Алмаз, графит, карбин, уголь – родные братья. Различия их физических свойств определяется различной кристаллической решеткой. Химические свойства сходны.

5 шаг – Подчеркивается огромное практическое значение простого вещества.

Экологизация курса химии по теме “Углерод”


Данная программа разработана В.М. Назаренко, МПГУ им. В.И. Ленина. В данной программе более глубоко развиваются МПС, на каждом уроке постоянно привлекаются знания учащихся из других предметов. При изучении этой темы необходимо придерживаться нескольких направлений:

1. Выяснить причины, вызывающие нарушение круговорота углерода в природе.

2. Рассмотреть физико-химическую природу оксидов углерода и оксида кремния.

3. Сравнить возможность их использования живыми организмами в процессе жизнедеятельности.

4. Раскрыть вопросы охраны окружающей природной среды в связи с добычей и использованием ископаемого твердого топлива и производство цемента.

5. Живой мир на планете Земля – это мир углерода, единственный элемент, сохраняющий в цепях одновременно одинарные и кратные связи.

6. Различие от углерода у кремния из-за увеличения заряда ядра и радиуса атома ослабевает связь валентных электронов с ядром, возрастает металличность, уменьшается электроотрицательность. Цепи из атомов кремния неустойчивы.

7. Сформулировать проблему: почему углекислый газ усваивается растениями в процессе фотосинтеза, а оксид кремния IV нет. Ответ на него заключается в следующем: в процессе усвоения растениями углекислого газа лежит реакция карбоксилирования рибулозо-1,5-дифосфата (связывание углекислого газа в темновой фазе фотосинтеза). Эта реакция возможна из-за молекулярной природы углекислого газа (он легко диффундирует через устьица в лист) и из-за наличия в его молекуле двойных связей, при разрыве которых происходит присоединение углекислого газа к углеводу.

В оксиде кремния IV атомы кремния не способны к образованию кратных связей: при образовании химических связей два валентных электрона из четырех переходят на a-подуровень, поэтому с кислородом образуются только одинарные связи. Оставшиеся у кремния и у кислорода неспаренные электроны образуют новые связи с соседними молекулами оксида кремния IV, что приводит к созданию гигантского полимера с атомной кристаллической решеткой, твердого, исключительно плотного инертного вещества, не способного растворяться в воде. В этой форме кремний не усваивается растениями, не включается в обменные процессы и, следовательно, выбывает из круговорота веществ в природе. Но в некоторых формах он участвует в обменных процессах веществ живых организмов. Кремний входит в состав стеблей растений, тканей животных. А искусственно полученные препараты на основе кремния менее канцерогенны, чем на основе углерода, способствуют более эффективному заживлению ран, язв, срастанию костей.

Обсуждая вопрос “Круговорот углерода в природе” следует объяснить, что круговорот состоит из двух циклов:

геологический

биологический

Представлен углекислым газом, выделяющимися в атмосферу, при сгорании ископаемого топлива, с вулканическими газами, из горячих источников, поверхностных слоев океанических вод, при выветривании горных пород, а также при осаждении карбонатов кальция и магния.

Этот цикл очень длителен.

Цикл короткий и интенсивный: углерод в виде углекислого газа ассимилируется из атмосферы растениями и из биосферы вновь возвращается в геосферу – с растениями углерод попадает в организмы животных и человека, а затем при гниении животных и растительных останков – в почву и в виде углекислого газа в атмосферу.

Средняя длительность существования соединений углерода в экосистемах 15 лет.


Важно отметить главную роль океана, т.к. он адсорбирует из атмосферы примерно 30% углекислого газа, но также служит и его источником, выделяя его в атмосферу в районах теплых вод. Он является “насосом природы”, перекачивая углекислый газ из холодных в теплые районы, т.к. там давление углекислого газа в атмосфере выше (основано на физико-химическом свойстве углекислого газа к растворению в воде, в холодной лучше, чем в теплой). В океанической воде растворено 88% углерода, за 26 дней это количество возвращается в биосферу, остальной оседает в виде карбонатов. Установлено, что углекислого газа в 60 раз больше в водах рек, морей, океанов, чем в атмосфере.

Необходимо указать, что круговорот углерода в природе не замкнут. Углерод выходит из него часто на длительный срок в виде карбонатов, торфа, сапропели, гумуса. Каждый год в атмосферу Земли за счет естественных процессов поступает примерно 0,5×109 углекислого газа, тогда как антропогенное его поступление достигло 15-25×109 т, что в 100-150 раз больше.

Вместе с учащимися указать главные причины интенсивного притока углекислого газа в атмосферу.


Случайные файлы

Файл
refecSU.doc
114358.rtf
149751.doc
128840.rtf
80306.doc




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.